
Introduction
To address the ever increasing bandwidth requirements of next-generation 
high-performance systems, FPGA vendors are continually making incremental 
improvements in their device architectures. Even with these advanced 
architectures, designers often resort to implementing their designs using very 
wide on-chip buses. In fact, on-chip buses of 512, 1,024 or 2,048 bits wide are 
increasingly common. Although this method improves data throughput in the 
FPGA core, these wide buses consume significant fabric resources and power. Also, 
as the FPGA fills up, routing resources can become congested and the core clock 
frequency may be limited. 

Another way to increase bandwidth is to implement the design in an FPGA 
fabricated using the most advanced process node, hoping to benefit from the 
higher transistor switching speeds that are available with the latest technology. 
However, as geometries continue to shrink, the interconnect delays between the 
logic cells dominate the total delay in the FPGA and this limits the effectiveness 
of the higher transistor switching speeds. Fundamentally, conventional FPGA 
architectures cannot keep up with tomorrow’s performance demands.

The need for bandwidth
Optical transport network (OTN), wireline, military, and high-performance 
computing applications require ever increasing bandwidth. The need to move 
greater quantities of data has resulted in increasing datapath widths inside the 
FPGA. The amount of data that can be moved through the routing architecture is a 
function of the number of wires used and the speed (fMAX) of the wires. The number 
of wires available is a function of technology; it is derived from the size of the 
device and the minimum pitch of wires in the technology.  

Routing architectures can make the wires more efficient by using hierarchy (for 
example, local routing in logic array blocks (LABs) and global routing on horizontal 
and vertical interconnect lines) and optimization techniques. However, doubling 
the number of wires simply adds die area and increases power dissipation. The 
speed of routing wires is technology driven (the RC delay on a wire), and is subject 
to the FPGA architecture and the design implementation. For example, pipelining a 
design can increase the clock speed without increasing the number of wires, which 
increases bandwidth for the same resources. 

Intel Stratix® 10 FPGAs and SoCs leverage the Intel HyperFlex FPGA Architecture to 
deliver 2X the core clock frequency performance of previous generations.
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The need for efficiency
When designers pipeline a design for greater performance, 
they add registers to the design. The traditional methodology 
of building register-look-up table (LUT) pairs that is present 
in all existing FPGA core architectures means that logic is 
sacrificed to reach the added pipeline registers. Pipelining in 
conventional architectures also incurs a delay cost because 
a signal needs to be routed into and out of a logic block. The 
result is diminishing returns for the pipelining technique, 
especially when routing delays dominate the total delay. 
Figure 1 shows before and after examples of conventional 
pipelining, and the added delays due to routing into and out 
of the added register. 

The need for improved clocking
As clock speeds increase, clock skew becomes increasingly 
important. Conventional FPGA core architectures have 
concentrated on balanced clock trees, which minimize 
deterministic skew.  This method has served well for designs 
up to 500 MHz, but to break the 500 MHz barrier and reach 
speeds of up to 1 GHz, a next-generation clocking solution is 
needed. The solution must localize clocks to minimize local 
variation and skew, as well as provide a flexible network that 
services the numerous clocks that are common in high-
performance designs.

The Intel® FPGA HyperFlex™ solution
To address these challenges, Intel Stratix® 10 FPGAs and 
SoCs introduce (formerly Altera® Stratix 10 FPGAs and 
SOCs) an entirely new core architecture, the Intel HyperFlex 
FPGA Architecture. The innovative Intel HyperFlex FPGA 
Architecture supports previously unimaginable levels 
of performance: 2X the core performance compared 
to previous-generation high-performance FPGAs. This 
performance level is not possible with conventional 
architectures. To take advantage of the Intel HyperFlex FPGA 
Architecture, you use familiar techniques: register retiming, 
pipelining, and design optimization. These techniques can 
speed up designs on conventional architectures. However, 
when combined with the Intel HyperFlex FPGA Architecture, 
the result is designs that run at blazing fast speeds with core 
clock rates up to 1 GHz.

The Intel HyperFlex FPGA Architecture
Intel Stratix 10 devices have a redesigned core architecture 
that includes additional registers, called Hyper-Registers, 
everywhere throughout the core fabric. These registers are 
available in every interconnect routing segment and at the 
inputs of all functional blocks. The Hyper-Registers provide 
a fine-grained solution to the problem of how to increase 
bandwidth and improve area and power efficiency. With 
many more registers that are easy to access, you can retime 
registers to eliminate critical paths, add pipeline registers to 
remove routing delays, and optimize your design for best-
in-class performance. When Hyper-Registers are used to 
implement these techniques, all FPGA logic resources are 
available for logic functions instead of being sacrificed as 
feed-through cells to reach conventional LUT registers.

To keep up with the high-performance of the core fabric, the 
dedicated function blocks in the FPGA core—such as M20K 
memory and floating-point digital signal processing (DSP) 
blocks—have been redesigned to support operation at clock 
speeds up to 1 GHz.

To make it easy to use the Hyper-Registers, the Intel Quartus® 
Prime software includes a Hyper-Aware design flow with:

•	 Post place-and-route performance tuning for accelerated 
timing closure

•	 Hyper-Aware synthesis and place-and-route for efficient 
pipelining

•	 Fast Forward Compilation to explore performance 
enhancement options 

To address the need for a flexible clock network, Intel 
Stratix 10 FPGAs and SoCs include programmable clock tree 
synthesis. This ASIC-like clocking helps mitigate skew and 
uncertainty. It also lowers power dissipation by intelligently 
enabling clock network branches.

Intel Stratix 10 FPGAs and SoCs use Intel’s 14 nm Tri-Gate 
(FinFET) process technology. The combination of the new 
Intel HyperFlex FPGA Architecture and the industry-leading 
FinFET process technology allows Intel Stratix 10 devices 
to achieve 2X the core performance compared to previous-
generation high-performance FPGAs.

Hyper-registers
With 90 nm Stratix II FPGAs, Intel was the first FPGA vendor 
to shrink the critical path depth with 6-input LUTs. In 28 nm 
Stratix V FPGAs, Intel introduced time-borrowing latches to 
allow automatic micro-retiming of clock and data signals.

With 14 nm Intel Stratix 10 devices, Intel is the first FPGA 
company to introduce an entirely new “registers everywhere” 
core architecture filled with bypassable retiming and 
pipelining registers. This method breaks the link between the 
functional registers in the adaptive logic module (ALM) itself, 
and the Hyper-Registers used for retiming and pipelining 
critical paths and improving design efficiency.

The Intel HyperFlex FPGA Architecture is built for retiming 
and pipelining high-performance designs. All routing 
segments have an optional Hyper-Register built into the 
programmable routing multiplexer that allows the routing 
segment to be registered or combinational. These Hyper-
Registers are available everywhere throughout the core 
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Figure 1. Added Delays with Conventional Pipelining
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fabric as shown in Figure 2. The Hyper-Registers are 
represented by the small squares at the intersection of every 
horizontal and vertical routing segment.

With this architecture, there is no need to use an ALM to find 
a pipeline register. Every horizontal and vertical interconnect 
line in the device contains a Hyper-Register that can be 
turned on or off by configuring the FPGA.

Hyper-Registers are simple, one-input one-output 
bypassable registers without routing multiplexers on the 
input. You control these registers with configuration bits. 
They are inexpensive and do not add significant silicon area 
to the device. Because Hyper-Registers are ubiquitous in 
the core fabric, designers are not limited by the number of 
registers in their design. They can retime and pipeline as 
needed without consuming additional LAB resources. In 
many cases, the design uses fewer LAB resources because 
registers are implemented using the Hyper-Registers in the 
routing instead of partially consuming an ALM simply to use 
its register.

The HyperFlex Advantage
Because the Hyper-Registers are included in the interconnect 
routing architecture, timing optimizations can be done after 
place-and-route, without changing the design’s routing. 
The Intel Quartus Prime software can easily find and use 
the Hyper-Registers during retiming operations. Figure 3 

compares a conventional routing multiplexer and a HyperFlex 
routing multiplexer with the included Hyper-Register. 

The Hyper-Registers allow you to take advantage of 
traditional performance enhancement methods—retiming, 
pipelining, and optimization—implemented in a new and 
better way. When implemented using the Hyper-Registers 
instead of the ALM registers, these techniques are referred 
to as Hyper-Retiming, Hyper-Pipelining and Hyper-
Optimization. Table 1 summarizes the performance gains 
achieved when these techniques are used in sequence, giving 
a three-step process to maximize performance using the 
Intel HyperFlex FPGA Architecture.

Step Architecture 
Advantage

Effort 
Required

Core 
Performance *

1 Hyper-
Retiming

No change 
or minor RTL 
changes

1.5X

2 Hyper-
Pipelining

Added 
pipelining

1.65X

3 Hyper-
Optimization

Design 
dependent

2X or more

Table 1. Three-Step Process to Maximize Performance Using 
the Intel HyperFlex FPGA Architecture
* vs. previous-generation high-performance FPGAs

Hyper-retiming
In conventional architectures, software performs retiming by 
finding a nearby, unused ALM register and including it in the 
circuit. This retiming method is limited by the granularity of 
the ALM register placement:

•	 The unused ALM may not be located conveniently, causing 
additional delay to include it in the design.

•	 There is a delay overhead to route through the ALM to the 
register. 

Figure 2. "Registers Everywhere" Intel HyperFlex FPGA Architecture
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•	 If software is trying to retime a wide bus (512 bits, 1,024 
bits, or wider), retiming requires a large number of 
additional logic cells.

•	 The algorithms required to determine the best location for 
a retimed register are difficult.

Figure 4 shows a routing example before and after retiming 
with conventional architectures.

In the new HyperFlex core architecture, the Hyper-Registers 
are used to enable fine-grained Hyper-Retiming. The Intel 
Quartus Prime software retimes the path by moving the 
register out of the logic cell and into the interconnect. 
Because there are Hyper-Registers available in every routing 
segment, there are many registers locations available, making 
the optimization easy. 

With Hyper-Registers, the retiming granularity is extremely 
fine; it is the delay of an individual routing wire, which is 
a few tens of picoseconds. The compromises made when 
trying to locate the retiming registers in conventional 

architectures, shown in Figure 4, are unnecessary with the 
Intel HyperFlex FPGA Architecture. Therefore, paths that are 
a few nanoseconds long can be split perfectly during Hyper-
Retiming as shown in Figure 5.

Hyper-Retiming does not affect existing LABs and ALMs, 
which means that there is no incremental placement or 
routing required and no significant impact on compilation 
time. To retime a register, the register location is simply 
pushed into the routing to its naturally balanced final 
location (see Figure 5) after place and route. This feature is 
a tremendous benefit for designs with wide data buses that 
require hundreds or thousands of additional ALMs to achieve 
retiming in conventional architectures, and typically require 
extensive rerouting.

•	 For more information about using the Intel Quartus Prime 
software to perform Hyper-Retiming, refer to the Using 
Intel Quartus Prime Software to Maximize Performance 
in the Intel HyperFlex FPGA Architecture technical white 
paper.

Figure 4. Retiming in Conventional FPGA Architecture

ALM

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect Shorter Interconnect

(Fewer Hops)
Shorter Interconnect

(Fewer Hops)

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns

3 ns

1.5 ns

2.5 ns

286 MHz

Before
Retiming

333 MHz

After
Retiming

Short
Interconnect Long Interconnect

(Many Hops)

Figure 5. Hyper-Retiming in the Intel HyperFlex FPGA Architecture
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Figure 6. Pipelining in Conventional FPGA Architectures

Hyper-pipelining
Conventional pipelining suffers from the same drawbacks 
as conventional retiming, and the lack of register granularity 
reduces the effectiveness of this optimization. Conventional 
pipelining is inherently an iterative process because the 
number of pipeline stages required, and their optimum 
location, is unknown at the start of the process. Therefore, 
the design must be placed and routed several times while 
trying to converge on a pipelined solution that meets 
performance goals. Figure 6 shows a simple example before 
and after conventional pipelining.

When using the Intel HyperFlex FPGA Architecture, you can 
pipeline at will using the Hyper-Registers without bloating 
the size of the design. This process is known as Hyper-
Pipelining. In many cases, a design with heavy register usage 
experiences a decrease in the number of ALMs required to 
implement the design because no “orphaned” registers are 
needed.

With what amounts to cost-free pipelining, you can use 
the technique aggressively, particularly in datapath and 

feed-forward logic. Figure 7 shows an example of Hyper-
Pipelining. performance goals. Figure 6 shows a simple 
example before and after conventional pipelining.

When using the Intel HyperFlex FPGA Architecture, you can 
pipeline at will using the Hyper-Registers without bloating 
the size of the design. This process is known as Hyper-
Pipelining. In many cases, a design with heavy register usage 
experiences a decrease in the number of ALMs required to 
implement the design because no “orphaned” registers are 
needed.

With what amounts to cost-free pipelining, you can use 
the technique aggressively, particularly in datapath and 
feed-forward logic. Figure 7 shows an example of Hyper-
Pipelining.

Because the software can automatically retime the logic 
by moving registers into the interconnect, you only need 
to specify the required number of pipeline registers at the 
input to a clock domain or at a sub-design’s pin logic. The 
Intel Quartus Prime software then moves the registers into 
the routing as required, after place and route, solving the 
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Figure 7. Hyper-Pipelining in the Intel HyperFlex FPGA Architecture

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns1.5 ns

1.75 ns

286 MHz

572 MHz

Before
Pipelining

Short
Interconnect Long Interconnect

(Many Hops)

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect

Hyper
Pipelining

Shorter Interconnect
(Fewer Hops)

Hyper-Register

Shorter Interconnect
(Fewer Hops)

1.5 ns 1.75 ns

White Paper | Understanding How the New Intel FPGA HyperFlex Architecture Enables Next-Generation High-Performance Systems



multiple iteration problem that exists with pipelining in 
a conventional architecture. Placing registers together in 
the RTL also allows for easy logic parameterization when 
intellectual property (IP) libraries target more than one clock 
frequency (fMAX). Figure 8 shows an example of placing 
additional pipeline registers at the input of a clock domain 
and the resulting movement of these registers into the 
optimum position in the interconnect routing.

Designers who make their design pipeline-friendly will 
experience the greatest benefit from the Intel HyperFlex 
FPGA Architecture. For example, latency-tolerant forms of 
flow control, such as using data-valid signals instead of high-
fanout clock enables, allow the software to move registers 
easily through the FPGA core fabric.

For more information on design optimizations that take 
advantage of the Intel HyperFlex FPGA Architecture, refer to 
the Tailoring RTL Designs for Optimum Performance in the 
Intel HyperFlex FPGA Architecture technical white paper.

Hyper-optimization
After Hyper-Retiming and Hyper-Pipelining are complete, 
the performance gains may be so great in some sections of 
the design that other areas are exposed as bottlenecks that 
prevent further gains. These bottlenecks may be circuits such 

as long feedback loops or complex state machines that need 
to be evaluated on every clock cycle.

A common method for improving the design performance 
is to optimize specific portions of the design. For example, 
a design with a long feedback loop can limit the maximum 
frequency (fMAX). Redesigning the circuit to pre-compute the 
possible feedback values, and using a short feedback loop 
to select between them, increases the maximum frequency. 
With Hyper-Registers, this process can achieve higher speeds 
than are possible with conventional architectures because 
the pre-compute paths can be optimized using Hyper-
Retiming and Hyper-Pipelining. Figure 9 shows an example of 
Hyper-Optimization; performing a Shannon decomposition 
(or Boolean factorization) to shorten the loop thus increasing 
the maximum frequency. Typically, you target these 
optimizations at control loops in which the performance 
benefit greatly outweighs any area cost of the additional logic 
required to achieve the factorization.

Flexible, high-speed programmable clock tree 
synthesis
Clocking in high-performance FPGA designs is becoming 
more challenging for designers. Conventional FPGAs 
have fixed global clock tree networks that are designed to 
support high-fanout, chip-wide, global clock domains. At 

Figure 8. Placing Additional Pipeline Registers at the Input of a Clock Domain
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Figure 9. Hyper-Optimization of a Long Feedback Loop
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GHz performance, however, clock networks require greater 
flexibility. Designers want to create time-shifted clocks for 
performance balancing and clock crossing, and generate 
dynamically gated clocks for rate-matching and system 
power management.

To address these needs, the Intel HyperFlex FPGA 
Architecture contains an entirely new clock structure with 
pre-routed clock paths onto which a design’s clock region 
is synthesized (as is common for ASIC clock tree synthesis). 
This structure allows unprecedented flexibility to create 
small, localized clock domains. It also lets the software 
manage skew: taking advantage of beneficial skew when 
available and minimizing skew when necessary. Additionally, 
when required, this clock structure can be used to synthesize 
traditional global and regional balanced H-tree clocks for 
backwards compatibility.

The Intel Quartus Prime software manages the 
programmable clock tree synthesis; it synthesizes clock trees 
in an integrated fashion during place-and-route. Figure 10 

shows an example of balanced and unbalanced clock trees 
synthesized by this approach.

Power efficiency
Intel Stratix 10 FPGAs and SoCs offer a significant power 
improvement over previous families in large part due to the 
use of Intel’s 14 nm Tri-Gate (FinFET) process technology 
to fabricate the devices. Additionally, the Intel HyperFlex 
FPGA Architecture facilitates dramatic power savings. 
The increased performance of the Intel HyperFlex FPGA 
Architecture enables a 1,024 bit datapath clocked at 350 MHz 
to be implemented as a 512 bit datapath clocked at 700 MHz. 
As a result, the design fits into a device half the size. This 
change is neutral for dynamic power but reduces static power 
by half and also results in significant cost savings by using a 
smaller device. Alternatively, the designer has the freedom 
to use part of the performance dividend to improve clock 
speed, and convert the remaining performance dividend into 
power savings through reduced core power supply voltage or 
use a slower speed grade device. 

Productivity
The increased core performance available with the Intel 
HyperFlex FPGA Architecture provides benefits that go 
beyond simply running the core at a faster clock rate. The 
additional performance results in easier timing closure, 
improved design team productivity, and shorter time-to-
market for the product.

Conclusion
Meeting the needs of next generation, high-performance 
designs is a challenge with conventional FPGA core 
architectures. The value of techniques such as retiming, 
pipelining, and optimization are limited by the architecture 
itself. The Intel Stratix 10 Intel HyperFlex FPGA Architecture, 
with its “registers everywhere” approach, takes these 
optimizations to the next level, resulting in 2X the core 
performance compared to previous generation high-
performance FPGAs.Figure 10. Balanced and Unbalanced Clock Tree Synthesis
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Where to Get More Information
For more information about Intel and Stratix 10 FPGAs, visit https://www.altera.com/products/fpga/stratix-series/
stratix-10/overview.html
1	 White Paper: A New FPGA Architecture and Leading-Edge FinFET Process Technology Promise to Meet Next-Generation System Requirements
2	 Technical White Paper: Using Intel Quartus Prime Software to Maximize Performance in the Intel HyperFlex FPGA Architecture
3	 Technical White Paper: Tailoring RTL Designs for Optimum Performance in the Intel HyperFlex FPGA Architecture

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Experience What’s Inside, Intel Atom, Intel Core, Intel Xeon, MAX, Nios, 
Quartus, and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products and servic-
es at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to 
in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.  
* Other marks and brands may be claimed as the property of others.
			                     Please Recycle WP-01231-1.3


