
Introduction
To address the ever increasing bandwidth requirements of next-generation
high-performance systems, FPGA vendors are continually making incremental
improvements in their device architectures. Even with these advanced
architectures, designers often resort to implementing their designs using very
wide on-chip buses. In fact, on-chip buses of 512, 1,024 or 2,048 bits wide are
increasingly common. Although this method improves data throughput in the
FPGA core, these wide buses consume significant fabric resources and power. Also,
as the FPGA fills up, routing resources can become congested and the core clock
frequency may be limited.

Another way to increase bandwidth is to implement the design in an FPGA
fabricated using the most advanced process node, hoping to benefit from the
higher transistor switching speeds that are available with the latest technology.
However, as geometries continue to shrink, the interconnect delays between the
logic cells dominate the total delay in the FPGA and this limits the effectiveness
of the higher transistor switching speeds. Fundamentally, conventional FPGA
architectures cannot keep up with tomorrow’s performance demands.

The need for bandwidth
Optical transport network (OTN), wireline, military, and high-performance
computing applications require ever increasing bandwidth. The need to move
greater quantities of data has resulted in increasing datapath widths inside the
FPGA. The amount of data that can be moved through the routing architecture is a
function of the number of wires used and the speed (fMAX) of the wires. The number
of wires available is a function of technology; it is derived from the size of the
device and the minimum pitch of wires in the technology.

Routing architectures can make the wires more efficient by using hierarchy (for
example, local routing in logic array blocks (LABs) and global routing on horizontal
and vertical interconnect lines) and optimization techniques. However, doubling
the number of wires simply adds die area and increases power dissipation. The
speed of routing wires is technology driven (the RC delay on a wire), and is subject
to the FPGA architecture and the design implementation. For example, pipelining a
design can increase the clock speed without increasing the number of wires, which
increases bandwidth for the same resources.

Intel Stratix® 10 FPGAs and SoCs leverage the Intel HyperFlex FPGA Architecture to
deliver 2X the core clock frequency performance of previous generations.

Authors
Mike Hutton

Architect
Intel Programmable Solutions Group

Understanding How the New Intel®
HyperFlex™ FPGA Architecture Enables Next-
Generation High-Performance Systems

FPGA

Table of Contents

Introduction . 1

The Intel HyperFlex FPGA
	 Architecture 2

The HyperFlex Advantage. 3

Conclusion. 7

Where to Get More Information . . . 8

white paper

The need for efficiency
When designers pipeline a design for greater performance,
they add registers to the design. The traditional methodology
of building register-look-up table (LUT) pairs that is present
in all existing FPGA core architectures means that logic is
sacrificed to reach the added pipeline registers. Pipelining in
conventional architectures also incurs a delay cost because
a signal needs to be routed into and out of a logic block. The
result is diminishing returns for the pipelining technique,
especially when routing delays dominate the total delay.
Figure 1 shows before and after examples of conventional
pipelining, and the added delays due to routing into and out
of the added register.

The need for improved clocking
As clock speeds increase, clock skew becomes increasingly
important. Conventional FPGA core architectures have
concentrated on balanced clock trees, which minimize
deterministic skew. This method has served well for designs
up to 500 MHz, but to break the 500 MHz barrier and reach
speeds of up to 1 GHz, a next-generation clocking solution is
needed. The solution must localize clocks to minimize local
variation and skew, as well as provide a flexible network that
services the numerous clocks that are common in high-
performance designs.

The Intel® FPGA HyperFlex™ solution
To address these challenges, Intel Stratix® 10 FPGAs and
SoCs introduce (formerly Altera® Stratix 10 FPGAs and
SOCs) an entirely new core architecture, the Intel HyperFlex
FPGA Architecture. The innovative Intel HyperFlex FPGA
Architecture supports previously unimaginable levels
of performance: 2X the core performance compared
to previous-generation high-performance FPGAs. This
performance level is not possible with conventional
architectures. To take advantage of the Intel HyperFlex FPGA
Architecture, you use familiar techniques: register retiming,
pipelining, and design optimization. These techniques can
speed up designs on conventional architectures. However,
when combined with the Intel HyperFlex FPGA Architecture,
the result is designs that run at blazing fast speeds with core
clock rates up to 1 GHz.

The Intel HyperFlex FPGA Architecture
Intel Stratix 10 devices have a redesigned core architecture
that includes additional registers, called Hyper-Registers,
everywhere throughout the core fabric. These registers are
available in every interconnect routing segment and at the
inputs of all functional blocks. The Hyper-Registers provide
a fine-grained solution to the problem of how to increase
bandwidth and improve area and power efficiency. With
many more registers that are easy to access, you can retime
registers to eliminate critical paths, add pipeline registers to
remove routing delays, and optimize your design for best-
in-class performance. When Hyper-Registers are used to
implement these techniques, all FPGA logic resources are
available for logic functions instead of being sacrificed as
feed-through cells to reach conventional LUT registers.

To keep up with the high-performance of the core fabric, the
dedicated function blocks in the FPGA core—such as M20K
memory and floating-point digital signal processing (DSP)
blocks—have been redesigned to support operation at clock
speeds up to 1 GHz.

To make it easy to use the Hyper-Registers, the Intel Quartus®
Prime software includes a Hyper-Aware design flow with:

•	 Post place-and-route performance tuning for accelerated
timing closure

•	 Hyper-Aware synthesis and place-and-route for efficient
pipelining

•	 Fast Forward Compilation to explore performance
enhancement options

To address the need for a flexible clock network, Intel
Stratix 10 FPGAs and SoCs include programmable clock tree
synthesis. This ASIC-like clocking helps mitigate skew and
uncertainty. It also lowers power dissipation by intelligently
enabling clock network branches.

Intel Stratix 10 FPGAs and SoCs use Intel’s 14 nm Tri-Gate
(FinFET) process technology. The combination of the new
Intel HyperFlex FPGA Architecture and the industry-leading
FinFET process technology allows Intel Stratix 10 devices
to achieve 2X the core performance compared to previous-
generation high-performance FPGAs.

Hyper-registers
With 90 nm Stratix II FPGAs, Intel was the first FPGA vendor
to shrink the critical path depth with 6-input LUTs. In 28 nm
Stratix V FPGAs, Intel introduced time-borrowing latches to
allow automatic micro-retiming of clock and data signals.

With 14 nm Intel Stratix 10 devices, Intel is the first FPGA
company to introduce an entirely new “registers everywhere”
core architecture filled with bypassable retiming and
pipelining registers. This method breaks the link between the
functional registers in the adaptive logic module (ALM) itself,
and the Hyper-Registers used for retiming and pipelining
critical paths and improving design efficiency.

The Intel HyperFlex FPGA Architecture is built for retiming
and pipelining high-performance designs. All routing
segments have an optional Hyper-Register built into the
programmable routing multiplexer that allows the routing
segment to be registered or combinational. These Hyper-
Registers are available everywhere throughout the core

White Paper | Understanding How the New Intel HyperFlex FPGA Architecture Enables Next-Generation High-Performance Systems

Figure 1. Added Delays with Conventional Pipelining

ALM

Before
Pipelining

After
Pipelining

Interconnect Interconnect

Interconnect

White Paper | Understanding How the New Intel HyperFlex FPGA Architecture Enables Next-Generation High Performance Systems

fabric as shown in Figure 2. The Hyper-Registers are
represented by the small squares at the intersection of every
horizontal and vertical routing segment.

With this architecture, there is no need to use an ALM to find
a pipeline register. Every horizontal and vertical interconnect
line in the device contains a Hyper-Register that can be
turned on or off by configuring the FPGA.

Hyper-Registers are simple, one-input one-output
bypassable registers without routing multiplexers on the
input. You control these registers with configuration bits.
They are inexpensive and do not add significant silicon area
to the device. Because Hyper-Registers are ubiquitous in
the core fabric, designers are not limited by the number of
registers in their design. They can retime and pipeline as
needed without consuming additional LAB resources. In
many cases, the design uses fewer LAB resources because
registers are implemented using the Hyper-Registers in the
routing instead of partially consuming an ALM simply to use
its register.

The HyperFlex Advantage
Because the Hyper-Registers are included in the interconnect
routing architecture, timing optimizations can be done after
place-and-route, without changing the design’s routing.
The Intel Quartus Prime software can easily find and use
the Hyper-Registers during retiming operations. Figure 3

compares a conventional routing multiplexer and a HyperFlex
routing multiplexer with the included Hyper-Register.

The Hyper-Registers allow you to take advantage of
traditional performance enhancement methods—retiming,
pipelining, and optimization—implemented in a new and
better way. When implemented using the Hyper-Registers
instead of the ALM registers, these techniques are referred
to as Hyper-Retiming, Hyper-Pipelining and Hyper-
Optimization. Table 1 summarizes the performance gains
achieved when these techniques are used in sequence, giving
a three-step process to maximize performance using the
Intel HyperFlex FPGA Architecture.

Step Architecture
Advantage

Effort
Required

Core
Performance *

1 Hyper-
Retiming

No change
or minor RTL
changes

1.5X

2 Hyper-
Pipelining

Added
pipelining

1.65X

3 Hyper-
Optimization

Design
dependent

2X or more

Table 1. Three-Step Process to Maximize Performance Using
the Intel HyperFlex FPGA Architecture
* vs. previous-generation high-performance FPGAs

Hyper-retiming
In conventional architectures, software performs retiming by
finding a nearby, unused ALM register and including it in the
circuit. This retiming method is limited by the granularity of
the ALM register placement:

•	 The unused ALM may not be located conveniently, causing
additional delay to include it in the design.

•	 There is a delay overhead to route through the ALM to the
register.

Figure 2. "Registers Everywhere" Intel HyperFlex FPGA Architecture

Figure 3. Comparing Conventional and Hyperflex Routing

clk CRAM
Config

CRAM
Config

CRAM
Config

InterconnectInterconnect

Stratix 10 HyperFlex
Routing Multiplexer

(with Hyper-Register)
Conventional

Routing Multiplexer

ALM ALM ALM

ALM ALM ALM

ALM ALM ALM

Registers are available in every routing segment
Registers are available on all block inputs (ALM, M20K blocks, DSP blocks, and I/O cells)

•	 If software is trying to retime a wide bus (512 bits, 1,024
bits, or wider), retiming requires a large number of
additional logic cells.

•	 The algorithms required to determine the best location for
a retimed register are difficult.

Figure 4 shows a routing example before and after retiming
with conventional architectures.

In the new HyperFlex core architecture, the Hyper-Registers
are used to enable fine-grained Hyper-Retiming. The Intel
Quartus Prime software retimes the path by moving the
register out of the logic cell and into the interconnect.
Because there are Hyper-Registers available in every routing
segment, there are many registers locations available, making
the optimization easy.

With Hyper-Registers, the retiming granularity is extremely
fine; it is the delay of an individual routing wire, which is
a few tens of picoseconds. The compromises made when
trying to locate the retiming registers in conventional

architectures, shown in Figure 4, are unnecessary with the
Intel HyperFlex FPGA Architecture. Therefore, paths that are
a few nanoseconds long can be split perfectly during Hyper-
Retiming as shown in Figure 5.

Hyper-Retiming does not affect existing LABs and ALMs,
which means that there is no incremental placement or
routing required and no significant impact on compilation
time. To retime a register, the register location is simply
pushed into the routing to its naturally balanced final
location (see Figure 5) after place and route. This feature is
a tremendous benefit for designs with wide data buses that
require hundreds or thousands of additional ALMs to achieve
retiming in conventional architectures, and typically require
extensive rerouting.

•	 For more information about using the Intel Quartus Prime
software to perform Hyper-Retiming, refer to the Using
Intel Quartus Prime Software to Maximize Performance
in the Intel HyperFlex FPGA Architecture technical white
paper.

Figure 4. Retiming in Conventional FPGA Architecture

ALM

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect Shorter Interconnect

(Fewer Hops)
Shorter Interconnect

(Fewer Hops)

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns

3 ns

1.5 ns

2.5 ns

286 MHz

Before
Retiming

333 MHz

After
Retiming

Short
Interconnect Long Interconnect

(Many Hops)

Figure 5. Hyper-Retiming in the Intel HyperFlex FPGA Architecture

ALM

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect Shorter Interconnect

(Fewer Hops)
Shorter Interconnect

(Fewer Hops)

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns

1.5 ns 2.5 ns

286 MHz

Before
Pipelining

400 MHz

After
Pipelining

Short
Interconnect Long Interconnect

(Many Hops)

1.5 ns

White Paper | Understanding How the New Intel FPGA HyperFlex Architecture Enables Next-Generation High-Performance Systems

Figure 6. Pipelining in Conventional FPGA Architectures

Hyper-pipelining
Conventional pipelining suffers from the same drawbacks
as conventional retiming, and the lack of register granularity
reduces the effectiveness of this optimization. Conventional
pipelining is inherently an iterative process because the
number of pipeline stages required, and their optimum
location, is unknown at the start of the process. Therefore,
the design must be placed and routed several times while
trying to converge on a pipelined solution that meets
performance goals. Figure 6 shows a simple example before
and after conventional pipelining.

When using the Intel HyperFlex FPGA Architecture, you can
pipeline at will using the Hyper-Registers without bloating
the size of the design. This process is known as Hyper-
Pipelining. In many cases, a design with heavy register usage
experiences a decrease in the number of ALMs required to
implement the design because no “orphaned” registers are
needed.

With what amounts to cost-free pipelining, you can use
the technique aggressively, particularly in datapath and

feed-forward logic. Figure 7 shows an example of Hyper-
Pipelining. performance goals. Figure 6 shows a simple
example before and after conventional pipelining.

When using the Intel HyperFlex FPGA Architecture, you can
pipeline at will using the Hyper-Registers without bloating
the size of the design. This process is known as Hyper-
Pipelining. In many cases, a design with heavy register usage
experiences a decrease in the number of ALMs required to
implement the design because no “orphaned” registers are
needed.

With what amounts to cost-free pipelining, you can use
the technique aggressively, particularly in datapath and
feed-forward logic. Figure 7 shows an example of Hyper-
Pipelining.

Because the software can automatically retime the logic
by moving registers into the interconnect, you only need
to specify the required number of pipeline registers at the
input to a clock domain or at a sub-design’s pin logic. The
Intel Quartus Prime software then moves the registers into
the routing as required, after place and route, solving the

ALM

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect Shorter Interconnect

(Fewer Hops)
Shorter Interconnect

(Fewer Hops)

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns

1.5 ns 2.5 ns

286 MHz

Before
Pipelining

400 MHz

After
Pipelining

Short
Interconnect Long Interconnect

(Many Hops)

1.5 ns

Figure 7. Hyper-Pipelining in the Intel HyperFlex FPGA Architecture

ALM

Logic

ALM

Logic

ALM

Logic

3.5 ns1.5 ns

1.75 ns

286 MHz

572 MHz

Before
Pipelining

Short
Interconnect Long Interconnect

(Many Hops)

ALM

Logic

ALM

Logic

ALM

Logic

Short
Interconnect

Hyper
Pipelining

Shorter Interconnect
(Fewer Hops)

Hyper-Register

Shorter Interconnect
(Fewer Hops)

1.5 ns 1.75 ns

White Paper | Understanding How the New Intel FPGA HyperFlex Architecture Enables Next-Generation High-Performance Systems

multiple iteration problem that exists with pipelining in
a conventional architecture. Placing registers together in
the RTL also allows for easy logic parameterization when
intellectual property (IP) libraries target more than one clock
frequency (fMAX). Figure 8 shows an example of placing
additional pipeline registers at the input of a clock domain
and the resulting movement of these registers into the
optimum position in the interconnect routing.

Designers who make their design pipeline-friendly will
experience the greatest benefit from the Intel HyperFlex
FPGA Architecture. For example, latency-tolerant forms of
flow control, such as using data-valid signals instead of high-
fanout clock enables, allow the software to move registers
easily through the FPGA core fabric.

For more information on design optimizations that take
advantage of the Intel HyperFlex FPGA Architecture, refer to
the Tailoring RTL Designs for Optimum Performance in the
Intel HyperFlex FPGA Architecture technical white paper.

Hyper-optimization
After Hyper-Retiming and Hyper-Pipelining are complete,
the performance gains may be so great in some sections of
the design that other areas are exposed as bottlenecks that
prevent further gains. These bottlenecks may be circuits such

as long feedback loops or complex state machines that need
to be evaluated on every clock cycle.

A common method for improving the design performance
is to optimize specific portions of the design. For example,
a design with a long feedback loop can limit the maximum
frequency (fMAX). Redesigning the circuit to pre-compute the
possible feedback values, and using a short feedback loop
to select between them, increases the maximum frequency.
With Hyper-Registers, this process can achieve higher speeds
than are possible with conventional architectures because
the pre-compute paths can be optimized using Hyper-
Retiming and Hyper-Pipelining. Figure 9 shows an example of
Hyper-Optimization; performing a Shannon decomposition
(or Boolean factorization) to shorten the loop thus increasing
the maximum frequency. Typically, you target these
optimizations at control loops in which the performance
benefit greatly outweighs any area cost of the additional logic
required to achieve the factorization.

Flexible, high-speed programmable clock tree
synthesis
Clocking in high-performance FPGA designs is becoming
more challenging for designers. Conventional FPGAs
have fixed global clock tree networks that are designed to
support high-fanout, chip-wide, global clock domains. At

Figure 8. Placing Additional Pipeline Registers at the Input of a Clock Domain

White Paper | Understanding How the New Intel FPGA HyperFlex Architecture Enables Next-Generation High-Performance Systems

Figure 9. Hyper-Optimization of a Long Feedback Loop

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

ALM

Logic

Time Around Feedback
Loop Limits fMAX

Time Around Short
Loop Does NOT

Limit fMAX

A

B
C

A

B
C

0

1

Short Loop

GHz performance, however, clock networks require greater
flexibility. Designers want to create time-shifted clocks for
performance balancing and clock crossing, and generate
dynamically gated clocks for rate-matching and system
power management.

To address these needs, the Intel HyperFlex FPGA
Architecture contains an entirely new clock structure with
pre-routed clock paths onto which a design’s clock region
is synthesized (as is common for ASIC clock tree synthesis).
This structure allows unprecedented flexibility to create
small, localized clock domains. It also lets the software
manage skew: taking advantage of beneficial skew when
available and minimizing skew when necessary. Additionally,
when required, this clock structure can be used to synthesize
traditional global and regional balanced H-tree clocks for
backwards compatibility.

The Intel Quartus Prime software manages the
programmable clock tree synthesis; it synthesizes clock trees
in an integrated fashion during place-and-route. Figure 10

shows an example of balanced and unbalanced clock trees
synthesized by this approach.

Power efficiency
Intel Stratix 10 FPGAs and SoCs offer a significant power
improvement over previous families in large part due to the
use of Intel’s 14 nm Tri-Gate (FinFET) process technology
to fabricate the devices. Additionally, the Intel HyperFlex
FPGA Architecture facilitates dramatic power savings.
The increased performance of the Intel HyperFlex FPGA
Architecture enables a 1,024 bit datapath clocked at 350 MHz
to be implemented as a 512 bit datapath clocked at 700 MHz.
As a result, the design fits into a device half the size. This
change is neutral for dynamic power but reduces static power
by half and also results in significant cost savings by using a
smaller device. Alternatively, the designer has the freedom
to use part of the performance dividend to improve clock
speed, and convert the remaining performance dividend into
power savings through reduced core power supply voltage or
use a slower speed grade device.

Productivity
The increased core performance available with the Intel
HyperFlex FPGA Architecture provides benefits that go
beyond simply running the core at a faster clock rate. The
additional performance results in easier timing closure,
improved design team productivity, and shorter time-to-
market for the product.

Conclusion
Meeting the needs of next generation, high-performance
designs is a challenge with conventional FPGA core
architectures. The value of techniques such as retiming,
pipelining, and optimization are limited by the architecture
itself. The Intel Stratix 10 Intel HyperFlex FPGA Architecture,
with its “registers everywhere” approach, takes these
optimizations to the next level, resulting in 2X the core
performance compared to previous generation high-
performance FPGAs.Figure 10. Balanced and Unbalanced Clock Tree Synthesis

Balanced

Unbalanced

Balanced
Full H-Tree

Software Constructs Network As Needed for Design
Start with Pre-Built H-Tree Templates

White Paper | Understanding How the New Intel FPGA HyperFlex Architecture Enables Next-Generation High-Performance Systems

Where to Get More Information
For more information about Intel and Stratix 10 FPGAs, visit https://www.altera.com/products/fpga/stratix-series/
stratix-10/overview.html
1	 White Paper: A New FPGA Architecture and Leading-Edge FinFET Process Technology Promise to Meet Next-Generation System Requirements
2	 Technical White Paper: Using Intel Quartus Prime Software to Maximize Performance in the Intel HyperFlex FPGA Architecture
3	 Technical White Paper: Tailoring RTL Designs for Optimum Performance in the Intel HyperFlex FPGA Architecture

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Experience What’s Inside, Intel Atom, Intel Core, Intel Xeon, MAX, Nios,
Quartus, and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products and servic-
es at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to
in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.
* Other marks and brands may be claimed as the property of others.
			  Please Recycle WP-01231-1.3

