

Functional Safety Control Platform for AMRs (FuSA for AMRs)

NEXCOBOT

Open Robots & Machines

Jenny Shern General Manager NexCOBOT

Functional Safety Control Platform for

Autonomous Mobile Robots

Jenny Shern

December 20, 2022

Autonomous Mobile Robots(AMRs) Market

Realize the Importance of AMR Safety

Safety Functions of AMRs

SCB100 Safety Controller Platform

E-Stop Device

Raise platform – Locating shaft –

Camera Ultrasonic sensor

> Motor driver Side light

LIDAR

Braking System

Servo drive & encoder

Velocity Limiting

Safety laser scanner & Safety camera

Presence-sensing devices

AMR Safety Standards

The market for AMRs is growing so fast that safety standards are required to ensure that manufacturers develop safe machines to keep workers safe.

EU Standard	American Standard
ISO 3691-4:2020	RIA R15.08-1-2020
For Industrial Trucks - Safety Requirements And Verification - Part 4: Driverless Industrial Trucks And Their Systems	For Industrial Mobile Robots - Safety Requirements - Part 1: Requirements For The Industrial Mobile Robot

International Organization for Standardization

Traditional AMR Safety Protection Architecture - CANOpen

NEXCOBOT

SCB100 - Robot Safety Controller Board

Combine navigation controller and safety controller into one controller

Board-level SIL2, Cat.3 PLd safety capability enabled by the Intel Atom[®] x6427FE processor

- Accelerated development with a safety-related software stack
- Save time (12-18 months) and effort for IEC 61508 certification
- Compatible with Safety RTOS and Safety Hypervisor

Intel, the Intel logo and Intel Atom are trademarks of Intel Corporation or its subsidiaries.

NexCOBOT & Synapticon Solution – EtherCAT FSoE

Intel, the Intel logo and Intel Atom are trademarks of Intel Corporation or its subsidiaries.

NEXCOBOT

AMR Architecture

NEXCOBOT

Software Building Blocks for SCB100

SCB100 Functional Safety Features

Board-level SIL2 safety capability enabled by the Enhanced for IoT Intel Atom[®] x6427FE processor

Delivers performance and power efficiency, is enhanced for IoT, and supports key FuSa-capable features

In-Band Error Correcting Code (ECC)

• This feature corrects singlebit memory errors in standard, non-ECC memory.

Intel[®] Safety Island (Intel[®] SI)

During operation, Intel[®] SI
checks the processor to help
ensure that the architecture
is functioning as expected.

Intel, the Intel logo and Intel Atom are trademarks of Intel Corporation or its subsidiaries.

Intel[®] Slim Bootloader

 Lightweight bootloader and supports verified boot, measured boot, and secured firmware updates.

Pre-OS Checker

 SIL3-capable software component that verifies the integrity of the boot process.

Safety Application Scenario of SCB100

When the AMR is moving in the work field, we need to make sure the moving speed is under the limit of ISO 3691-4 or RIA 15.08-1.

Velocity Limiting

 Users could implement a velocity limiting safety function with SCB100, by receiving the safety encoder data from safety inputs, and calculating the velocity of AMR. If the velocity is over limit, the SCB100 could trigger safety stop functions of safety servo drive by FSoE.
If AMR detects any pedestrian is inside the danger zone of AMR, AMR should stop in order to prevent the collision.

Collision Avoidance

 Users could implement a collision avoidance safety function with SCB100, by receiving the safety data from presence-sensing device and calculating the danger zone of AMR. If it detects any pedestrian inside the danger zone , the SCB100 could trigger safety stop functions of safety servo drive by FSoE.

Thank You

FOR MORE INFORMATION

www.nexcobot.com

contact@nexcobot.com

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.