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What next?

 Given an example (or group of examples), we know how to compute 
the derivative for each weight.

 How exactly do we update the weights?

 How often?  (after each training data point? after all the training 
data points?)
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What next?—Gradient Descent

 W_new = W_old - lr * derivative

 Classical approach—get derivative for entire data set, then take a step in 
that direction

 Pros: Each step is informed by all the data

 Cons: Very slow, especially as data gets big
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Another approach: Stochastic Gradient Descent

 Get derivative for just one point, and take a step in that direction

 Steps are “less informed” but you take more of them

 Should “balance out”

 Probably want a smaller step size

 Also helps “regularize”
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Compromise approach: Mini-batch

 Get derivative for a ”small” set of points, then take a step in that direction

 Typical mini batch sizes are 16, 32

 Strikes a balance between two extremes
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Comparison of Batching Approaches
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Batching Terminology

Full-batch: 
Use entire data set to compute gradient before updating

Mini-batch: 
Use a smaller portion of data (but more than single example) to compute gradient before 
updating

Stochastic Gradient Descent (SGD): 
Use a single example to compute gradient before updating (though sometimes people 
use SGD to refer to minibatch, also)
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Batching Terminology

 An Epoch refers to a single pass through all of the training data.

 In full batch gradient descent, there would be one step taken per epoch.

 In SGD / Online learning, there would be n steps taken per epoch (n = 
training set size)

 In Minibatch there would be (n/batch size) steps taken per epoch

 When training, it is common to refer to the number of epochs needed for 
the model to be “trained”.
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Note on Data Shuffling

 To avoid any cyclical movement and aid convergence, it is recommended 
to shuffle the data after each epoch.

 This way, the data is not seen in the same order every time, and the 
batches are not the exact same ones.
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Feedforward Neural Network
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Training in Action

Step 1
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Training in Action

Step 2
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Training in Action

Step 3



Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

14

Training in Action

Step 4



Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

15

Training in Action

Step 5
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Training in Action

First Epoch Complete!
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Shuffle the Data!
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Shuffle the Data!

Step 6
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The Keras Package 

 Keras allows easy construction, training, and execution of Deep Neural 
Networks

 Written in Python, and allows users to configure complicated models 
directly in Python

 Uses either Tensorflow or Theano “under the hood”

 Uses either CPU or GPU for computation

 Uses numpy data structures, and a similar command structure to scikit-
learn (model.fit , model.predict, etc.)
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Typical Command Structure in Keras

 Build the structure of your network.

 Compile the model, specifying your loss function, metrics, and optimizer 
(which includes the learning rate).

 Fit the model on your training data (specifying batch size, number of 
epochs)

 Predict on new data

 Evaluate your results
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Building the model

 Keras provides two approaches to building the structure of your model:

 Sequential Model: allows a linear stack of layers – simpler and more 
convenient if model has this form

 Functional API: more detailed and complex, but allows more complicated 
architectures

 We will focus on the Sequential Model.
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Running Example, this time in Keras

Let’s build this Neural Network structure shown below in Keras:

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
 𝑦1

 𝑦2

 𝑦3
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Keras—Sequential Model

First, import the Sequential function and initialize your model object:

from keras.models import Sequential

model = Sequential()
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Keras—Sequential Model

Then we add layers to the model one by one.

from keras.layers import Dense, Activation 

# For the first layer, specify the input dimension

model.add(Dense(units=4, input_dim=3)) 

# Specify an activation function

model.add(Activation(sigmoid'))

# For subsequent layers, the input dimension is presumed from

# the previous layer 

model.add(Dense(units=4))

model.add(Activation(sigmoid'))

model.add(Dense(units=3))

model.add(Activation('softmax'))
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Multiclass Classification with Neural Networks

 For binary classification problems, we have a final layer with a single node 
and a sigmoid activation.

 This has many desirable properties
 Gives an output strictly between 0 and 1

 Can be interpreted as a probability

 Derivative is “nice”

 Analogous to logistic regression

 Is there a natural extension of this to a multiclass setting?
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Multiclass Classification 
with Neural Networks
 Reminder: one hot encoding for 

categories

 Take a vector with length equal to 
the number of categories

 Represent each category with one 
at a particular position (and zero 
everywhere else)

1
0
0

0
1
0

0
0
1

Cat Dog Toaster
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Multiclass Classification with Neural Networks

 For multiclass classification problems, let the final layer be a vector with 
length equal to the number of possible classes.

 Extension of sigmoid to multiclass is the softmax function.

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

 𝑘=1
𝐾 𝑒𝑧𝑘

 Yields a vector with entries that are between 0 and 1, and sum to 1
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Multiclass Classification with Neural Networks

 For loss function use “categorical cross entropy”

 This is just the log-loss function in disguise

𝐶. 𝐸.= − 

𝑖=1

𝑛

𝑦𝑖log(  𝑦𝑖)

𝜕𝐶. 𝐸.

𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥
⋅
𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝜕𝑧𝑖
=  𝑦𝑖 − 𝑦𝑖

 Derivative has a nice property when used with softmax
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Ways to scale inputs

 Linear scaling to the interval [0,1]

 Linear scaling to the interval [-1,1]

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑖 = 2
𝑥𝑖 −  𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1
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Ways to scale inputs

 Standardization (making variable approx. std. normal)

𝑥𝑖 =
𝑥𝑖 −  𝑥

𝜎
; 𝜎 =

1

𝑛
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2




