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ISSUE: STANDARD RNNS HAVE POOR MEMORY

= Transition Matrix necessarily weakens signal
*= Need a structure that can leave some dimensions unchanged over many steps

= This is the problem addressed by so-called Long-Short Term Memory RNNs (LSTM)

(intel) Nervana Al Academy \ 2




IDEA: MAKE “REMEMBERING™ EASY

= Define a more complicated update mechanism for the changing of the internal state
= By default, LSTMs remember the information from the last step

= |tems are overwritten as an active choice
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LSTM DIAGRAM
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http://colah.github.io /posts/2015-08-Understanding-LSTMs /
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM DIAGRAM

cell state gets updated
in two stages

Ct—1 =P
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LSTM DIAGRAM

Decide what

to “forget”
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LSTM DIAGRAM

information
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LSTM DIAGRAM

Decide what
to “forget”
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LSTM DIAGRAM
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LSTM DIAGRAM
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LSTM DIAGRAM

Add in “new” @

information
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LSTM DIAGRAM

Add in “new” @
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LSTM DIAGRAM

Add in “new” @

information
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LSTM DIAGRAM

Note: '+‘ represents
element-wise multiplication
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LSTM DIAGRAM

c Note: '+‘ represents
» Ct element-wise multiplication

Ct—1 =P

Co = fi*Ceeq +ipx C¢

r1

forget add
@ the old the new
(or not) (or not)

hy




LSTM DIAGRAM

Ct—1 =P

Note: '+‘ represents
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LSTM DIAGRAM

Final stage computes

s I\ the output
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LSTM DIAGRAM

Final stage computes
the output

Ct—1 =P

Ct
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Note: No weights here

he—y =
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LSTM UNROLLED
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FINAL POINTS

» This is the most common version of LSTM, but there are many different “flavors”

— Gated Recurrent Unit (GRU)
— Depth-Gated RNN

= LSTMs have considerably more parameters than plain RNNs

= Most of the big performance improvements in NLP have come from LSTMs, not
plain RNN
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