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Issue: Standard RNNs have poor memory

▪ Transition Matrix necessarily weakens signal

▪ Need a structure that can leave some dimensions unchanged over many steps

▪ This is the problem addressed by so-called Long-Short Term Memory RNNs (LSTM)
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Idea: Make “remembering” easy

▪ Define a more complicated update mechanism for the changing of the internal state

▪ By default, LSTMs remember the information from the last step

▪ Items are overwritten as an active choice
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LSTM diagram
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM diagram
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LSTM diagram
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LSTM diagram
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LSTM diagram
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LSTM diagram
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LSTM diagram
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Final stage computes 
the output



18

LSTM diagram
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LSTM unrolled
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Final Points

▪ This is the most common version of LSTM, but there are many different “flavors”

– Gated Recurrent Unit (GRU)

– Depth-Gated RNN

▪ LSTMs have considerably more parameters than plain RNNs

▪ Most of the big performance improvements in NLP have come from LSTMs, not 
plain RNN




