


2

Issue: Variable length sequences of words

▪ With images, we forced them into a specific input dimension

▪ Not obvious how to do this with text

▪ For example, classify tweets as positive, negative, or neutral

▪ Tweets can have a variable number of words

▪ What to do?



3

Issue: Ordering of words is important

▪ Want to do better than “bag of words” implementations

▪ Ideally, each word is processed or understood in the appropriate context

▪ Need to have some notion of “context”

▪ Words should be handled differently depending on “context”

▪ Also, each word should update the context



4

Idea: Use the notion of “recurrence”

▪ Input words one by one

▪ Network outputs two things:

– Prediction: What would be the prediction if the sequence ended with that word

– State: Summary of everything that happened in the past

▪ This way, can handle variable lengths of text

▪ The response to a word depends on the words that preceded it



5

Idea: Use the notion of “recurrence”

STATE



6

Idea: Use the notion of “recurrence”

STATE



7

Idea: Use the notion of “recurrence”

STATE



8

Idea: Use the notion of “recurrence”

STATE



9

“Unrolling” the RNN

STATE STATE STATE STATE



10

“Unrolling” the RNN

STATE STATE STATE STATE

U U U U

V V V V

o1 o3o2 o4

s1 s3s2 s4

w1 w3w2 w4

W W W W



11

“Unrolling” the RNN

STATE STATE STATE STATE

? +? ++

“This” “great”“is” “!”



12

“Unrolling” the RNN

In Keras, this part is accomplished by a subsequent Dense layer.

STATE STATE STATE STATE

U U U U

V V V V

o1 o3o2 o4

s1 s3s2 s4

w1 w3w2 w4

W W W W



13

“Unrolling” the RNN

This part is the core RNN.

STATE STATE STATE STATE

U U U U

V V V V

o1 o3o2 o4

s1 s3s2 s4

w1 w3w2 w4

W W W W



14

“Unrolling” the RNN

Keras calls this part the “kernel” (e.g. kernel_initializer,…).

STATE STATE STATE STATE

U U U U

V V V V

o1 o3o2 o4

s1 s3s2 s4

w1 w3w2 w4

W W W W



15

“Unrolling” the RNN

Keras calls this part “recurrent” (recurrent_initializer,…).

STATE STATE STATE STATE

U U U U

V V V V

W W W W

o1 o3o2 o4

s1 s3s2 s4

w1 w3w2 w4



16

Mathematical Details

▪ wi is the word at position i

▪ si is the state at position i

▪ oi is the output at position i

▪ 𝑠𝑖 = 𝑓(𝑈𝑤𝑖 +𝑊𝑠𝑖−1) (Core RNN)

▪ 𝑜𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑖) (subsequent dense layer)



17

Mathematical Details

▪ wi is the word at position i

▪ si is the state at position i

▪ oi is the output at position i

▪ 𝑠𝑖 = 𝑓(𝑈𝑤𝑖 +𝑊𝑠𝑖−1) (Core RNN)

▪ 𝑜𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑖) (subsequent dense layer)

In other words:

▪ current state = function1(old state, current input)

▪ current output = function2(current state)

▪ We learn function1 and function2 by training our network!



18

More Mathematical Details

▪ r = dimension of input vector

▪ s = dimension of hidden state

▪ t = dimension of output vector (after dense layer)

▪ U is a s x r matrix

▪ W is a s x s matrix

▪ V is a t x s matrix

Note: The weight matrices U,V,W are the same across all positions.



19

Practical Details

▪ Often, we train on just the ”final” output and ignore the intermediate outputs

▪ Slight variation called Backpropagation Through Time (BPTT) is used to train RNNs

▪ Sensitive to length of sequence (due to “vanishing/exploding gradient” problem)

▪ In practice, we still set a maximum length to our sequences

– If input is shorter than maximum, we “pad” it

– If input is longer than maximum, we truncate



20

Other Uses of RNNs

▪ We have focused on text/words as application

▪ But, RNNs can be used for other sequential data

– Time-Series Data

– Speech Recognition

– Sensor Data

– Genome Sequences



21

Weaknesses of RNNs

▪ Nature of state transition means it is hard to keep information from distant past in 
current memory without reinforcement

▪ In the next lecture, we will introduce LSTMs, which have a more complex mechanism 
for updated the state




