
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Issue

35
2019

Intel® Rendering Framework Using
Software-Defined Visualization
Unifying AI, Analytics, and HPC on a Single Cluster

Advancing OpenCL™ for FPGAs

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE

Letter from the Editor 3
Happy New Year...and May 2019 Bring You High Performance
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

Intel Rendering Framework Using Software-Defined Visualization 5
Why Intel® Xeon® Processors Excel at Visualization

Unifying AI, Analytics, and HPC on a Single Cluster 13
Maximizing Efficiency and Lowering Costs for Tomorrow's Enterprise

Advancing OpenCL™ for FPGAs 17
Boosting Performance with Intel® FPGA SDK for OpenCL™ Technology

Parallelism in Python* 33
Dispelling the Myths with Tools to Achieve Parallelism

Remove Memory Bottlenecks Using Intel® Advisor 39
Understanding How Your Program is Accessing Memory Helps You Get More from Your Hardware

MPI-3 Non-Blocking I/O Collectives in Intel® MPI Library 63
Speeding up I/O for HPC Applications

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Happy New Year...and May 2019 Bring You High Performance
Welcome to our first issue of 2019. I didn’t make any bold predictions at the start of 2018—
just that the parallel computing future is heterogeneous. However, this trend was already well
underway, and will continue to gain momentum this year. It wasn’t exactly a bold prediction,
and I won’t make any bold predictions this year either. I’ll just call out a few trends I’m watching.

The open source community initiative on software-defined visualization (SDVis.org)
continues to demonstrate that the CPU is better for large-scale rendering than GPU-based
solutions, which suffer from memory limitations and high cost. This is the topic of our feature
article, Intel® Rendering Framework Using Software-Defined Visualization. The advantage
of SDVis isn’t news to the film industry, which has been doing CPU-based rendering for many
years, but SDVis is spreading to other computational domains where visualization of ever-
larger datasets is needed.

This brings us to another trend I’m watching closely: “The Convergence of HPC, BDA,
and AI in Future Workflows” (a talk I gave recently at the 2018 New York Scientific Data
Summit at Brookhaven National Laboratory). Trish Damkroger, Intel’s vice president and
general manager of Extreme Computing, published a similar viewpoint recently on Top500.
org: The Intersection of AI, HPC, and HPDA: How Next-Generation Workflows Will Drive
Tomorrow’s Breakthroughs. The line between traditional high-performance computing,
artificial intelligence, and big data analytics is blurring, so I asked the Intel Data Center Group
to provide a guest commentary: Unifying AI, Analytics, and HPC on a Single Cluster.

As I’ve said before, heterogeneous parallelism is the future, and FPGAs are getting attention
as an offload device for software acceleration. James Reinders, our editor emeritus, published
several articles last year on programming FPGAs. In this issue, Professor Martin Herbordt
from Boston University shares some of his best practices for OpenCL programming on
FPGAs. In Advancing OpenCL™ for FPGAs, he walks us through the optimization of some
common numerical algorithms.

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://sdvis.org/
https://www.bnl.gov/nysds18/files/talks/session3/Gabb-keynote-nysds18.pdf
https://www.bnl.gov/nysds18/files/talks/session3/Gabb-keynote-nysds18.pdf
https://www.bnl.gov/nysds18/index.php
https://www.bnl.gov/nysds18/index.php
https://www.top500.org/features/content/the-intersection-of-ai-hpc-and-hpda-how-next-generation-workflows-will-drive-tomorrows-breakthroughs/
https://www.top500.org/features/content/the-intersection-of-ai-hpc-and-hpda-how-next-generation-workflows-will-drive-tomorrows-breakthroughs/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

We round out this issue with three articles on code optimization: Parallelism in Python*,
Remove Memory Bottlenecks Using Intel® Advisor, and MPI-3 Non-Blocking I/O
Collectives in Intel® MPI Library.

Future issues of The Parallel Universe will feature articles on using just-in-time compilation to
optimize Python code, new features in Intel® Software Development Tools, performance case
studies, and much more. Be sure to subscribe so you won't miss a thing.

Also, don’t forget to check out Tech.Decoded for more information on Intel solutions for code
modernization, visual computing, data center and cloud computing, data science, and systems
and IoT development.

Henry A. Gabb
January 2019

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.seek.intel.com/parallel-universe-magazine
https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Rob Farber, Global Technology Consultant, TechEnablement

Software-defined visualization (SDVis) is akin to software-defined networking, software-defined

infrastructure, and other initiatives Intel is taking to maximize the benefits―and inherent performance―

of modern Intel® Xeon® processors with software that takes advantage of high thread count and data

parallelism. The performance is there, and the advantages over dedicated devices with limited available

memory are manifold―including the ability to use ever-improving advanced algorithms that exploit the:

 • Larger memory capacity of the processor

 • Flexibility and easy upgradability of software versus hardware replacement

 • Overall cost savings during procurement and improved total cost of ownership over the lifespan of the
hardware

Why Intel® Xeon® Processors Excel at Visualization

InTEL® REnDERIng FRaMEwORk usIng
sOFTwaRE-DEFInED VIsuaLIzaTIOn

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

Performance and Scalability that have Redefined Visualization
Jim Jeffers, senior director and senior principal engineer for Intel’s visualization solutions, notes, “With the

Intel® Rendering Framework, all the work is being done on the CPU, while users are getting the same―

or better―experience than with today’s dedicated graphics hardware.” The Intel Rendering Framework

provides both scalable and interactive ray tracing and OpenGL* visualization via the Intel® Embree, Intel®
OSPRay, and Intel® OpenSWR libraries. Plus, the Intel Rendering Framework now includes the new Intel®
Open Image Denoise library.

Not surprisingly, modern high-throughput processor cores packaged in multi- and many-core processors

can execute many tasks interactively, and with performance unequaled by earlier generations of

processors. Jeffers points out that “Benchmarks show a 100x increase in rendering performance

compared to what was available in 2016 when rendering OpenGL triangle-based images with Mesa."*

This level of performance has redefined scientific visualization and is making significant inroads into the

cinematic and professional visualization market segments (Figure 1). Jeffers points out that with its ability

to exploit the available CPU memory (commonly 192 GB or more for a processor versus 16 GB for a high-

end GPU), the Intel Rendering Framework can deliver the same or better performance with fidelity that a

GPU can’t match. That, coupled with the ability to run and visualize anywhere, regardless of the scale of

the visualization task and without requiring specialized hardware for interactive response, is the reason

high-performance computing (HPC) centers no longer need to procure GPUs for visualization clusters.

1 The Intel® Rendering Framework with SDVis technology supports rendering on
platforms of all sizes including cloud and HPC clusters.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/rendering-framework
https://embree.github.io/
https://www.ospray.org/
https://www.ospray.org/
http://openswr.org/
http://www.openimagedenoise.org/
http://www.openimagedenoise.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

The Primary HPC Visual Analysis Approach for Many
Five years ago, you never would have heard an HPC user say, “I prefer rendering my images on CPUs.”

However, that mindset changed as CPU-based interactive and photorealistic rendering supplanted GPUs

in many HPC centers. Paul Navrátil, director of visualization at the Texas Advanced Computing Center

(TACC), highlights TACC’s commitment by pointing out that “CPU-based SDVis will be our primary visual

analysis mode on Frontera*, leveraging the Intel Rendering Framework stack.” Frontera is expected to be

the fastest academic supercomputer in the U.S. when it becomes operational in 2019.

In a word, the scalability is “outstanding” as demonstrated by a 1.1 trillion triangle OpenGL hero

benchmark by Kitware1 on the Trinity* supercomputer at Los Alamos National Laboratory. However, it

doesn’t take a supercomputer to run SDVis. The integration of Intel Rendering Framework components

such as OSPRay into Paraview makes exploring the benefits of ray tracing easy on most hardware

platforms. David DeMarle, principal engineer at Kitware, notes that with the Intel Rendering Framework, “A

one-line change is all that is required for VTK* and ParaView* users to switch between OSPRay ray tracing

and OpenGL rendering.”

Traditional Batch and New In Situ and In-Transit
Visualization Workflows
The software-defined nature of the Intel Rendering Framework means that scientists can now

perform in situ rendering, where visualization occurs using the same nodes as the computation. In situ

visualization has been identified as a key technology to enable science at the exascale.2 Jeffers points

out, “As we move to exascale, we have to manage exabytes of data. While the data can be computed,

the I/O systems aren’t getting there to move the data. Hence, in situ. Otherwise, it can take days, weeks,

or months to visualize.” He likes to summarize this by stating, “A picture is worth an exabyte.”

A Path to Exascale Visualization
As part of a U.S. Department of Energy (DOE) multi-institutional effort, and in collaboration with private

companies and other national labs, Argonne National Laboratory is working to leverage the SENSEI*

framework to help people prepare for the arrival of Aurora*, a new Intel-Cray system. Aurora will be

capable of delivering more than an exaflop of floating-point performance. SENSEI is one example of

a portable framework that enables in situ, in-transit, and traditional batch visualization workflows for

analysis and scalable interactive rendering of the huge data volumes generated when using an exascale

supercomputer.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.sensei-insitu.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Depending on the application, researchers sometimes may prefer to dedicate more supercomputer nodes

to a computationally expensive simulation, while using a smaller number of nodes for rendering. This

asymmetric load balancing is called in-transit visualization. Unlike in situ visualization that renders data in

place on the node, in-transit visualization does incur some overhead as data must be moved across the

communications fabric between nodes. The payoff is the additional compute power that can be dedicated

to the simulation. Both in-transit and in situ workflows keep the data in memory and avoid writing to

storage. Joseph Insley, Visualization and Analysis Team lead at the Argonne Leadership Computing

Facility, points out, “With SENSEI, users can utilize in situ and in-transit techniques to address the widening

gap between flop/s and I/O capacity, which is making full-resolution, I/O-intensive post hoc analysis

prohibitively expensive, if not impossible.”

Visualization for All, No Special Hardware Required
A big advantage of CPU-based rendering is that no special hardware is required, which means it can

be used by nearly everyone on most computational hardware, from laptops and workstations to

organizational clusters and leadership-class supercomputers, and even in the cloud.

Interactive photorealistic ray tracing can occur on as few as eight Intel® Xeon® Scalable 8180 processors

or scale to big data, high-quality rendering using in situ nodes.3,4,5,6 Jeffers notes that the interactive

performance delivered by the Intel Rendering Framework, and photorealistic rendering with the freely

available OSPRay library and viewer, “address the need and create the want.” Eliminating the requirement

for specialized display hardware means even exabyte simulation data can be “visualized anywhere.” Users

appreciate how they can view results on their laptops and switch to display walls or a fully immersive cave.

The ability to run and visualize anywhere using CPUs―regardless of the scale of the visualization task and

without requiring specialized hardware for interactive response―is the reason HPC users are now using

CPUs for visualization tasks. The integration of the Intel Rendering Framework SDVis capabilities into the

popular VisIt*7 and ParaView* viewers, along with frameworks like SENSEI*, gives everyone the ability to

perform analysis and use either OpenGL rendering or create up to photoreal images.

Figure 2 summarizes the advantages of software- versus hardware-defined visualization.

OpEnVInO™ TOOLkIT
Develop Multiplatform Computer Vision Solutions

FREE
DOwnLOaD

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://software.intel.com/en-us/openvino-toolkit/choose-download
https://software.intel.com/en-us/openvino-toolkit/choose-download

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Optimize Code for Modern Hardware

2 Advantages of software- versus hardware-defined visualization

From HPC to Professional Rendering Applications
Jeffers observes that one of the key factors driving SDVis adoption is the visual fidelity of the ray tracing.

Basically, users get up to photorealism because the software is able to model the physics of light using

both serial and parallel processing on the CPU, along with scalable, interactive performance.

The cross-market appeal of the Intel Rendering Framework with SDVis is clear. As Jeffers observes, “There

is a real pull from submarkets like CAD and automotive. Photorealism is extremely important in improving

‘virtual’ vehicle design and manufacturing from commercial airplanes to military vehicles. Essentially,

decisions can be made about what vehicle to build without ever having to build it. Meanwhile, there is

increasing pull from adjunct markets that include offline and interactive rendering for animation and

photoreal visual effects.”

It’s All About Separation of Costs
From a software perspective, the Intel Rendering Framework provides the tuned and optimized low-

level operations. This is why Jeffers claims it delivers great performance to the applications developer by

simply calling the rendering APIs. The scalability to run in distributed environments is also there, which

has enabled the big advance in professional rendering to “interactive”8 rendering and ray tracing with full

visual effects on huge, complicated data sets. This is why movie studios run on render farms containing

thousands of Intel® CPUs.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

Jeffers likes to point out the differences between the animation used in the three-time Academy Award*

nominated 1989 film The Little Mermaid and the recent Moana image shown below to highlight the

improvements enabled by ray tracing using the Intel Rendering Framework. Previously, an overnight

rendering workflow would yield a few seconds of video. The 160-billion-object Moana island scene,

shown in Figure 3 (recently made publicly available courtesy of Walt Disney Animation Studios to enable

research and best industry practices), was rendered live using Intel OSPRay and Intel Embree ray tracing

libraries along with the new Intel Open Image Denoise library. System memory capacity was important,

since the rendering process consumed more than 100 GB.

3 This image containing 160 billion objects was ray traced live using the Intel Rendering
Framework and the Intel Open Image Denoise Library (Image courtesy Walt Disney
Animation Studios).

Looking to the Future
Jeffers is also excited about the convergence of artificial intelligence (AI) and the ray tracing capabilities of Intel

OSPRay and Intel Embree. For example, AI was used to define the believable movement of the robots that were

rendered using these libraries in the movie Pacific Rim (Figure 4). Intel Xeon Scalable processors give the Ziva*

AI software the performance needed to generate the real-time characters that can progressively learn body

movements, while also easily applying features and behaviors from one character to another.9

When asked if photorealist animation will replace actors, Jeffers replied that he thinks humans are

necessary to provide the emotional impact a movie demands. However, the technology may advance to

the point where voice-overs and actor overlays will become more important as the visual fidelity of state-

of-the-art rendering technology continues to improve.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.disneyanimation.com/technology/datasets
http://www.openimagedenoise.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

4 AI joins with ray tracing to deliver more lifelike characters in the movie Pacific Rim (Image
courtesy Intel)

CPU-Based Visualization
As mentioned, Intel has initiatives aside from the Intel Rendering Framework to exploit the serial and

parallel performance of modern many- and multi-core Intel Xeon processors to replace dedicated

hardware devices. However, the spectacular images created by the Intel Rendering Framework clearly

demonstrate the appeal of CPU-based visualization. The software libraries are open-source and available

for download.

Users who simply wish to experience SDVis without doing any development can download the ParaView*

or VisIt* applications or the recently announced OSPRay Studio viewer. Meanwhile, HPC developers can

use a framework like SENSEI* to exploit in situ and in-transit visualization to run at scale.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://ai.intel.com/ziva-pacific-rim/
https://ai.intel.com/ziva-pacific-rim/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

Organizations looking to experience the benefit of SDVis can look to Intel Select Solutions for
Professional Visualization for verified hardware and software solutions that combine the latest Intel

Xeon Scalable processors with other technologies such as Intel® Omni-Path Architecture, Intel® SSDs,

and the OpenHPC cluster software stack.

Here’s where application developers can get more information:

 • The Embree Ray Tracing Kernel Library
 • The OSPRay Distributed Ray Tracing Infrastructure
 • The OpenSWR OpenGL Software Rasterizer
 • The Intel Open Image Denoise Library will soon become available at https://openimagedenoise.github.io/.

While not the point of this article, interested readers can look to other Intel initiatives such as Intel
Software Defined Networking and Intel Software Defined Infrastructure to see how Intel Xeon

Scalable processors are being used to replace other dedicated pieces of hardware.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in

developing machine learning technology that he applies at national labs and commercial organizations.

Rob can be reached at info@techenablement.com.

References
1The benchmark only used 1/19th of the machine to render 1.1 trillion triangles. Kitware believes

they could have rendered 10-20 trillion triangles per second on the full machine. (http://www.
techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/)

2https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf

3http://sdvis.org/

4http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx

5https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf

6http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-
visualization/

7https://tacc.github.io/visitOSPRay/

8Interactive does not imply fluid real-time frame rates.

9https://ai.intel.com/ziva-pacific-rim/

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/docs/select-solutions/select-solutions-for-professional-visualization-brief.html
https://www.intel.com/content/www/us/en/products/docs/select-solutions/select-solutions-for-professional-visualization-brief.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
http://www.openhpc.community/
https://embree.github.io/
http://ospray.org/
http://openswr.org/
https://openimagedenoise.github.io/
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/adopting-software-defined-networking-in-the-enterprise-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/adopting-software-defined-networking-in-the-enterprise-paper.html
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/software-defined-infrastructure-sdi-infographic.html
mailto:info%40techenablement.com?subject=
http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/
http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/
https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf
http://sdvis.org/
http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx
https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf
http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/
http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/
https://tacc.github.io/visitOSPRay/
https://ai.intel.com/ziva-pacific-rim/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

Allene Bhasker and Keith Mannthey, Solution Architects, Data Center Group, Intel Corporation

The next few years will be remembered as the time when artificial intelligence (AI)―including machine and deep

learning―became mainstream all over the enterprise. One study shows that more than 60% of enterprises are

currently putting AI solutions in place, with predictive analytics as the most common application.

Hosting Strategy for AI, Analytics, and HPC Workloads
As IT organizations decide where to host AI workloads and AI-driven analytics, many consider purpose-

built servers equipped with specialized accelerators and GPUs. Those who are forward-looking may think in

terms of clusters of these servers to handle the expected growth of AI’s role in their day-to-day operations.

A broader perspective still notes that AI, analytics, and HPC workloads all run well on similar cluster

hardware, based on robust individual cores and high-speed interconnects.

Maximizing Efficiency and Lowering Costs for Tomorrow’s Enterprise

unIFyIng aI, anaLyTIcs, anD Hpc On a sIngLE cLusTER

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

At this point, a common question arises: “What would it take to run AI, analytics, and HPC workloads

together on the same cluster?” This approach is particularly attractive if you consider a business

process that uses all three types of processing. For example, running simulation and modeling, data

cleaning, and AI-based inference steps all on the same cluster is far more efficient than maintaining

separate clusters.

Convergence onto a single cluster also has obvious cost benefits. Server utilization is higher with a

single cluster, so you can buy fewer servers. A simpler environment is less expensive to configure and

maintain―and lets you avoid expensive requirements to move and stage data among multiple clusters.

Integrating these workloads onto a single environment also helps reduce latency, something that gets

more important every year as real-time requirements emerge.

Build AI and Analytics Capabilities on the Existing HPC Platform
The approach to convergence focuses on adding AI and analytics capabilities on top of an HPC cluster.

The Intel HPC Platform Specification defines requirements for a base cluster solution that includes

common industry standards and practices for Intel-based solutions (Figure 1). This provides a common

and consistent interface for HPC applications, and many commercial HPC software vendors have

validated application support of solutions compliant with this platform specification.

1 Generalized Intel solution stack for converged clusters

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

Beyond the base definition, additional requirements for specific capabilities and functionalities are

described in distinct sections. Compliant solutions are composed by meeting the requirements of

the base solution plus the desired capability layers. This streamlines introduction or expansion of

capabilities while still maintaining the interoperability with applications targeting the platform. The

path to a converged platform involves adding new sections to the Intel HPC Platform Specification that

describe the requirements for AI and analytics capabilities.

Combining Solutions Built for Different Customer Environments
Intel is developing a series of solution architectures to help define requirements that converge AI,

analytics, and HPC workloads into a single, unified cluster. Making multiple resource managers work

together smoothly is a daunting challenge. And the solutions implement various approaches to

integrating capabilities such as maintaining job queues and scheduling jobs in a centralized way for all

types of workloads.

 • Solution 1: Extend HPC Batch Schedulers. This approach extends batch schedulers using wrapper
scripts that submit jobs on behalf of AI and analytics workloads. This simple approach has almost no
systems overhead.

 • Solution 2: Univa* Grid Engine and Resource Broker. For shops that are already using Univa Grid
Engine*, this solution uses Univa Resource Broker* to integrate Apache Mesos*-compatible AI and
analytics software.

 • Solution 3: Apache Mesos and Batch Schedulers. This forthcoming solution architecture
integrates Apache Mesos and batch schedulers to work together seamlessly across HPC, AI, and
analytics workloads.

The solution architectures are flexible in terms of supporting different ways of provisioning, whether

on bare metal or with virtual machines and containers on hybrid clouds. They also include storage

abstraction to unify data across object stores, providing a single source of data to be used in place,

without large-scale data movement. Intel is involved with enablement activities across the software

ecosystem, including open-source contributions and co-engineering with technology providers. This

optimization work is key to making sure that all three types of workloads benefit from the full range of

Intel® platform features for performance and security.

To make it easier to deploy converged cluster solutions, Intel makes pre-optimized, integrated

infrastructure available through participating OEMs as Intel® Select Solutions. Because these

architectures are validated in advance, mainstream enterprises now have a clear path to the efficiency

and cost benefits of converged clusters for tomorrow’s AI, analytics, and HPC workloads.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/hpc.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

BuILD BETTER,
FasTER cODE

Get Intel’s powerful, award-winning performance libraries
to optimize your code and cut your development time.
They’re free as part of Intel’s mission to support innovation
and impressive performance on Intel® architecture.

FREE DOwnLOaD >
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Software

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/performance-libraries
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

Martin C. Herbordt, Professor, Department of Electrical and Computer Engineering,
Boston University

Field programmable gate arrays (FPGAs) are capable of very high performance, especially power-

performance. This is perhaps not surprising. After all, FPGA hardware itself is malleable―configurable to

match the application rather than the other way around. Also not surprising is that this additional degree of

freedom―that the application developer can change the hardware as well as the software―should lead to

increased complexity everywhere in the application development workflow.

And indeed, this has been the case. Until recently, most developers of FPGA applications relied on tools and

methods that have more in common with those used by hardware designers than by software programmers.

The languages used have been hardware description languages (HDLs) such as Verilog* and VHDL*. These

describe the nature of the logic rather than a flow of instructions. The compile times (called synthesis) have

Boosting Performance with Intel® FPGA SDK for OpenCL™ Technology

aDVancIng OpEncL™ FOR Fpgas

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

been very long. And an uncomfortable amount of system knowledge has been required, especially for

debug and test.

All of this is now changing. Intel has created Intel® FPGA SDK for OpenCL™ technology1, which

provides an alternative to HDL programming. The technology and related tools belong to a class of

techniques called high-level synthesis (HLS) that enable designs to be expressed with higher levels

of abstraction. Intel FPGA SDK for OpenCL technology is now in widespread use. Amazingly for long-

time FPGA application developers, the performance achieved is often close to―or even better than―

HDL code. But it also seems apparent that achieving this performance is often limited to developers

who already know how the C-to-hardware translation works, and who have an in-house toolkit of

optimization methods.

At Boston University, we’ve worked on enumerating, characterizing, and systematizing one such

optimization toolkit. There are already a number of best practices for FPGA OpenCL documents. This

work augments them, largely by applying additional methods well known to the high-performance

computing (HPC) community2. In this methodology, we believe we’re on the right track. It’s taken

decades for HPC performance programming to reach its current level of sophistication. We shouldn’t

be surprised that users of Intel FPGA SDK for OpenCL technology need to follow a similar path and

learning curve.

Please note that you can see more details on the work described here in references 3 and 4 at the

end of the article. The first uses the FFT as a detailed case study. The second describes the empirically

guided optimization framework. Also of potential interest, in related work, references 5 and 6 show

how we augmented the toolflow, which can be used to test/verify design functionality and performance

without generating hardware for the entire system. As a result, we can identify design bottlenecks and

the impact of optimizations with greater accuracy, and thus achieve rapid turnaround. Figure 1 shows

how these pieces fit together with the existing toolflow.

Empirically Guided Code Optimizations
We’ve proposed a series of systematic and empirically guided code optimizations for OpenCL that

augment current best practices and substantially improve performance. Our work characterizes and

measures the impact of all these optimizations. This not only enables programmers to follow a script

when optimizing their own kernels, but also opens the way for the development of autotuners to

perform optimizations automatically.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

1 The standard Intel® FPGA SDK for OpenCL™ technology toolflow is shown in light blue. Our
augmentations to the standard toolflow are shown in yellow, green, and purple. This article
describes the systematic optimizations.

We broadly categorize code optimizations in this domain into three sets:

1. Intel’s best practices (IBPs)

2. Universal code optimizations (UCOs)

3. FPGA-specific optimizations (FSOs)

IBPs are design strategies given in the Intel Best Practices Guide7, which show how to express hardware

using OpenCL semantics. We separate these from UCOs and FSOs because IBPs are well-known to the

FPGA OpenCL community and there have been several studies characterizing their behavior.

UCOs consist of general approaches to optimizing programs that, to a large degree, are independent of

the compute platform, e.g.:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

 • Use 1D arrays

 • Records of arrays

 • Predication

 • Loop merging

 • Scalar replacement

 • Precomputing constants

Though described (for example, in reference 2), they are largely missing from IBP documentation.

FSOs consist of a number of FPGA-specific optimizations that typically augment IBPs. They’re based on:

 • Obtaining a particular FPGA-specific mapping not found as an IBP

 • Facts stated in IBPs, but which we have leveraged and converted into optimizations

 • Typically used practices which (we have found) should actually be avoided

There are seven code versions, discussed in detail in references 4 and 6, which are incrementally

developed. Each version contains one or more applied optimizations. Table 1 summarizes the

optimizations and their type (IBP, FSO, and/or UCO).

Version Optimizations Type
0 (GPU code for porting to FPGA OpenCL) ―
1 Single thread code with cache optimization IBP, FSO

2

Implement task parallel computations in separate kernels
and connect them using channels IBP

Fully unroll all loops with #pragma unroll IBP, UCO

Minimize variable declaration outside compute loops (use
temps where possible) IBP, UCO

Use constants for problem sizes and data values (instead of
relying on off-chip memory access) IBP, FSO, UCO

Coalesce memory operations IBP, UCO

3 Implement the entire computation within a single kernel
and avoid using channels FSO

4 Reduce array sizes to infer pipeline registers as registers
instead of BRAMs FSO

5 Perform computations in detail, using temporary variables
to store intermediate results FSO, UCO

6 Use predication instead of conditional branch statements
when defining forks in the data path FSO, UCO

Table 1. Summary of code versions and optimizations

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

Version 0: Sub-Optimal Baseline Code
A popular starting point (for example, in reference 8) is kernels based on multiple work items (MWI)

such as is appropriate for GPUs. Advantages of starting here include ease of exploiting data parallelism

through SIMD, and compute unit replication (CUR), which is exclusive to MWI structures.

Algorithm 1 shows a V0-type kernel (based on reference 9). The core operation is to populate a matrix

using known values of the first row and the first column. Each unknown entry is computed based on

the values of its left, up, and up-left locations. This is achieved using loops which iterate in order over

all matrix entries. The max function is implemented using “if-else” statements. In Algorithm 1, SIZE

represents the dimension of blocks of matrix entries being processed.

Algorithm 1. Needleman Wunsch-V0

Version 1: Preferred Baseline Code (Used for Reference)
A less intuitive, but preferred, alternative is to use (as a baseline) single-threaded CPU code. In particular,

initial designs should be implemented as single work item (SWI) kernels as recommended by IBPs. SWI

kernels can infer and exploit all forms of parallelism effectively, and do so in a more efficient way than

MWI kernels. The CPU-like baseline code should also be optimized for cache performance. This:

 • Helps the compiler infer connectivity between parallel pipelines (i.e., whether data can potentially be
directly transferred between pipelines instead of being stored in memory)

 • Improves bandwidth for on-chip data access

 • Efficiently uses the internal cache of load store units which are responsible for off-chip memory
transactions

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

Algorithm 2 shows the preferred baseline kernel. The first row and column of the matrix are Vector A

and Vector B, respectively.

Algorithm 2. Needleman Wunsch-V1

Version 2: IBPs
Given the preferred baseline code, we then apply the following commonly used IBPs:

 • Multiple task parallel kernels

 • Fully unroll all loops

 • Minimizing state register usage

 • Constant arrays

 • Coalescing

Algorithm 3 shows the Needleman Wunsch kernel structure after we apply IBPs. Parallelism is exploited

using a systolic array, with each processing element (PE) implemented in a separate kernel. Channels

are used to connect PEs in a specified sequence. For each inner loop iteration, PEs compute consecutive

columns within the same row. This ensures spatial locality for memory transactions. The drawback

is data dependencies between kernels, which can’t be reliably broken down by the compiler since it

optimizes each kernel as an individual entity. Thus, the overhead of synchronizing data paths can result

in performance degradation.

Algorithm 3. Needleman Wunsch-V2

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Version 3: Single-Kernel Design
In Version 3, we merge the IBP-optimized task parallel kernels and declare all compute loops within

the same kernel. This is because the compiler is still able to automatically infer task parallel pipelines.

Having a single kernel carries a number of advantages over the multi-kernel approach, e.g.:

 • Inherent global synchronization

 • Reduced resource usage and delays through pipeline merging/reordering

 • Simplified control logic

Algorithm 4 shows the kernel structure for implementing the systolic array as a single kernel. The

compiler can now optimize the entire computation, as opposed to individual PEs. Synchronization

overhead is also reduced, since almost all computation is tied to a single loop variable (j). Nested loops

are used because, in this particular case, the cost of initiation intervals is outweighed by the reduction in

resource usage. This is because the compiler was unable to infer data access patterns when loops were

coalesced.

Algorithm 4. Needleman Wunsch-V3

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

Version 4: Reduced Array Sizes
Having large variable arrays results in pipeline registers being inferred as BRAMs instead of registers,

which can have significant drawbacks on the design. Since BRAMs can’t source and sink data with the

same throughput as registers, barrel shifters and memory replication are required. This drastically

increases resource usage. Moreover, the compiler is also unable to launch stall-free iterations of

compute loops due to memory dependencies. The solution is to break large arrays corresponding to

intermediate variables into smaller ones.

Algorithm 5 shows the kernel structure for inferring pipeline registers as registers. All arrays are

expressed as individual variables, generated using scripts, with the exception of local storage of Vector B

in “left,” which has low throughput requirements.

Algorithm 5. Needleman Wunsch-V4

InTEL® MaTH kERnEL LIBRaRy FREE
DOwnLOaDFast Math Processing for Intel®-Based Systems

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

Version 5: Detailed Computations
The OpenCL compiler doesn’t reliably break down large computations being assigned to a single

variable into intermediate stages. This reduces the number of possible pipeline stages and can result in

larger critical paths and data dependency stalls. Our solution is to do computations in as much detail

as possible by using intermediate variables to help the compiler infer pipelines. If the logic is already

optimal, these variables will be synthesized away and won’t waste resources.

Algorithm 6 shows the kernel structure after performing computations in detail with a number of

intermediate variables added. The “max” function is also explicitly implemented.

Algorithm 6. Needleman Wunsch-V5

Version 6: Predication
We optimize conditional operations by explicitly specifying architecture states which ensure the validity

of the computation. Since hardware is persistent and will always exist once synthesized, we avoid using

conditional branch statements. Instead, variable values are conditionally assigned such that the output

of invalid operations is not committed and hence does not impact the overall result. Algorithm 7 shows

the “if-else” operations replaced with conditional assignments.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

Algorithm 7. Needleman Wunsch-V6

Hardware Specifications
The designs are implemented using an Intel® Arria® 10AX115H3F34I2SG FPGA and Intel® FPGA
SDK for OpenCL™ technology 16.0. This FPGA has 427,200 ALMs, 1,506K logic elements, 1,518 DSP

blocks, and 53 MB of on-chip storage. For GPU implementations, we use the NVIDIA Tesla* P100 PCIe

12GB GPU with CUDA* 8.0. It has 3,584 CUDA cores and peak bandwidth of 549 GB/s. CPU codes are

implemented on a 14-core, 2.4 GHz Intel® Xeon® E5-2680v4 processor with Intel® C++ Compiler
v16.0.1.

Optimization Characterization
The optimizations are tested for the full OpenCL compilation flow using these benchmarks:

 • Needleman Wunsch (NW)

 • Fast Fourier Transform (FFT)

 • Range Limited Molecular Dynamics (Range Limited)

 • Particle Mesh Ewald (PME)

 • Dense Matrix-Matrix Multiplication (MMM)

 • Sparse Matrix Dense Vector Multiplication (SpMV) and Cyclic Redundancy Check (CRC)

Table 2 provides a summary of these benchmarks, their associated dwarfs8, tested problem sizes, and

applicable code versions that are developed.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://software.intel.com/en-us/intel-opencl/
https://software.intel.com/en-us/intel-opencl/
https://www.intel.com/content/www/us/en/products/processors/xeon/e5-processors.html
https://software.intel.com/en-us/intel-compilers/
https://software.intel.com/en-us/intel-compilers/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

Benchmark Dwarf Problem
Size

V1 V2 V3 V4 V5 V6

NW Dynamic
Programming

16K x 16K
Integer
Table

• • • • • •

FFT Spectral Methods

64 point
Radix-2 1D
FFT, 8,192

Vectors
• • • • • •

Range Limited N-Body

180
Particles per

Cell, 15%
Pass
Rate

• • • • • •

PME Structured Grids

1,000,000
Particles,

323 Grid, 3D
Tri-Cubic

• • • •

MMM Dense Linear
Algebra

1K x 1K
Matrix,
Single

Precision
• • • •

SpMV Sparse Linear
Algebra

1K x 1K
Matrix,
Single

Precision,
5%-Sparsity,
NZ=51,122

• • • • •

CRC Combinational
Logic

100 MB
CRC32 • • • • •

Table 2. Benchmark summary

Figure 2 shows the results of individual optimizations. In almost all cases, we can see the same trend

where traditional optimizations (V2) only result in a fraction of the speedup possible. By applying the

additional optimizations on top of V2, performance is improved by orders of magnitude.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

2 Impact of systematic application of the proposed optimizations to a cache-optimized
CPU baseline code. In almost all cases, every subsequent code version shows increasing
performance, with up to orders of magnitude better performance possible for fully-
optimized

The average impact of individual optimizations is shown in Figure 3. Generally, each successive set

of optimizations applied results in increasing performance. The exception is V5. This is due to higher

execution times of V5 for NW and SpMV. In both cases, performing computations in as much detail as

possible results in the use of conditional statements that outweigh the benefits of the optimization.

Once these statements are removed in V6, the speedup increases.

3 Performance for different code versions, obtained by averaging the speedup of all
applicable benchmarks.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

To demonstrate the overall effectiveness of the approach, we compare the performance of the

optimized kernels against existing CPU, GPU, Verilog, and FPGA-OpenCL implementations. Table 3
lists the references for these designs. They’re either obtained from the literature or implemented using

available source code/libraries (denoted by an asterisk). Verilog FFT measurement from reference 3 has

been extended to include off-chip access overhead.

Table 3. References for existing implementations

Benchmark CPU GPU Verilog* OpenCL™
NW Rodinia*9 Rodinia*9 Benkrid*10 Zohouri*11

FFT MKL*12 cuFFT**13 Sanaullah*3 Intel14

Range Limited ― ― Yang*15 Yang15

PME Ferit16 Ferit*16 Sanaullah17 ―
MMM MKL*12 cuBLAS*18 Shen*19 Spector*20

SpMV MKL*12 cuSPARSE*18 Zhou*22 OpenDwarfs*8

CRC Brumme*23 ― Anand*24 OpenDwarfs8

Figure 4 shows the average speedup achieved over the CPU code, while Figure 5 shows the normalized

execution times for all implementations. From the results, we observe that our work outperforms

multicore CPU implementations by approximately 1.2x due to the performance of codes written using

Intel® Math Kernel Library (Intel® MKL). We’ve also achieved an average of approximately 5x lower

execution time than existing FPGA OpenCL work. The GPU speedup of 2.4x relative to our work is due

to the use of a high-end GPU (Tesla* P100) compared to a midrange FPGA (Intel® Arria® 10 FPGAs). We

therefore also provide an estimate of high-end FPGA performance (Stratix R 10*) using a conservative

factor of 4x to account for an increase in resource only. Results show that the optimized kernels on

Stratix 10 are expected to outperform GPU designs by 65%, on average.

Conclusions
Comparison with existing Verilog* implementations show that the OpenCL kernels are, on average,

within 12% of hand-tuned HDL. This demonstrates that the optimizations are able to bridge the

performance-programmability gap for FPGAs and deliver HDL-like performance using OpenCL.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://Intel Math Kernel Library (Intel MKL)
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

4 Average speedup with respect to CPU across all applicable benchmarks

5 Performance of our work compared to existing CPU, GPU, Verilog*, and FPGA OpenCL
implementations. Our work outperforms CPU and OpenCL for most of the benchmarks.
Moreover, we also achieve speedups over GPU (SpMV, PME) and Verilog (SpMV, Range
Limited).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

References
1Intel® FPGA SDK for OpenCL™ technology

2S. Chellappa, F. Franchetti, and M. Pueschel, “How To Write Fast Numerical Code: A Small
Introduction," in Generative and Transformational Techniques in Software Engineering II, Lecture
Notes in Computer Science v5235, 2008, pp. 196 - 259.

3A. Sanaullah and M. Herbordt, “FPGA HPC using OpenCL: Case Study in 3D FFT," in Proceedings of the
International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies, 2018.

4A. Sanaullah, R. Patel, and M. Herbordt, “An Empirically Guided Optimization Framework for FPGA
OpenCL," in Proceedings of the IEEE Conference on Field Programmable Technology, 2018.

5A. Sanaullah, C. Yang, D. Crawley, and M. Herbordt, “SimBSP: Enabling RTL Simulation for Intel FPGA
OpenCL Kernels," in Proceedings on Heterogeneous High-Performance Reconfigurable Computing, 2018.

6A. Sanaullah and M. Herbordt, “Unlocking Performance-Programmability by Penetrating the Intel
FPGA OpenCL Toolow," in IEEE High Performance Extreme Computing Conference, 2018.

7”Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide"

8K. Krommydas, A. E. Helal, A. Verma, and W.C. Feng, “Bridging the Performance Programmability
Gap for FPGAs via OpenCL: A Case Study with Opendwarfs," Department of Computer Science,
Virginia Polytechnic Institute and State University, Tech. Rep., 2016.

9S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia: A
Benchmark Suite for Heterogeneous Computing," in IEEE International Symposium on Workload
Characterization, 2009, pp. 44{54.

10K. Benkrid, Y. Liu, and A. Benkrid, “A Highly Parameterized and Efficient FPGA-Based Skeleton for
Pairwise Biological Sequence Alignment," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 17, No. 4, pp. 561 - 570, 2009.

11H. R. Zohouri, N. Maruyamay, A. Smith, M. Matsuda, and S. Matsuoka, “Evaluating and Optimizing
OpenCL Kernels for High Performance Computing with FPGAs" in International Conference for
High Performance Computing, Networking, Storage and Analysis, SC16, 2016, pp. 409{420.

12Intel® Math Kernel Library

13C. Nvidia, “CuFFT Library," 2010.

14FFT (1D) Design Example

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/mwh1391807516407.html
https://software.intel.com/en-us/mkl
https://www.intel.com/content/www/us/en/ programmable/support/support-resources/design-examples/design-software/opencl/fft-1d.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

References (Continued)
15C. Yang, J. Sheng, R. Patel, A. Sanaullah, V. Sachdeva, and M. Herbordt, “OpenCL for HPC with
FPGAs: Case Study in Molecular Electrostatics," in IEEE High Performance Extreme Computing
Conference, 2017.

16F. Buyukkececi, O. Awile, and I. F. Sbalzarini, “A Portable OpenCL Implementation of Generic
Particle―Mesh and Mesh―Particle Interpolation in 2D and 3D," Parallel Computing, Vol. 39, No. 2,
pp. 94 - 111, 2013V

17A. Sanaullah, A. Khoshparvar, and M. C. Herbordt, “FPGA-Accelerated Particle-Grid Mapping," in
Field-Programmable Custom Computing Machines (FCCM), 2016 IEEE 24th Annual International
Symposium on. IEEE, 2016, pp. 192 - 195.

18Nvidia, "CUBLAS Library," NVIDIA Corporation, Santa Clara, CA, 2008.

19J. Shen, Y. Qiao, Y. Huang, M. Wen, and C. Zhang, “Towards a Multi-Array Architecture for
Accelerating Large-Scale Matrix Multiplication on FPGAs," in Circuits and Systems (ISCAS), 2018
IEEE International Symposium on. IEEE, 2018, pp. 1 - 5.

20Q. Gautier, A. Althoff, P. Meng, and R. Kastner, “Spector: An OpenCL FPGA Benchmark Suite," in
International Conference on Field-Programmable Technology, 2016.

21Nvidia, “CuSparse Library," NVIDIA Corporation, Santa Clara, CA, 2014.

22L. Zhuo and V. K. Prasanna, “Sparse Matrix-Vector Multiplication on FPGAs," in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, 2005.

23S. Brumme, “Fast CRC32," http://create.stephan-brumme.com/crc32/, 2018.

24P. A. Anand et al., “Design of High Speed CRC Algorithm for Ethernet on FPGA using Reduced
Lookup Table Algorithm," in India Conference (INDICON), 2016 IEEE Annual. IEEE, 2016, pp. 1- 6.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

David Liu, Software Technical Consulting Engineer, and Anton Malakhov, Software Development
Engineer, Intel Corporation

Python* as a programming language has enjoyed nearly a decade of usage in both industry and academia. This

high-productivity language has been one of the most popular abstractions to scientific computing and machine

learning, yet the base Python language remains single-threaded. Just how is productivity in these fields being

maintained with a single-threaded language?

The Python language’s design, by Guido van Rossum, was meant to trade off type flexibility and predictable,

thread-safe behavior against the complexity of having to manage static types and threading primitives. This,

in turn, meant having to enforce a global interpreter lock (GIL) to limit execution to a single thread at a time to

preserve this design mentality. Over the last decade, many concurrency implementations have been made for

Python―but few in the region of parallelism. Does this mean the language isn’t performant? Let’s explore further.

Dispelling the Myths with Tools to Achieve Parallelism

paRaLLELIsM In pyTHOn*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

The base language’s fundamental constructs for loops and other asynchronous or concurrent calls all

abide by the single-threaded GIL, so even list comprehensions such as [x*x for x in range(0,10)]

will always be single-threaded. The threading library’s existence in the base language is also a bit

misleading, since it provides the behavior of a threading implementation but still operates under the GIL.

Many of the features of Python’s concurrent futures to almost-parallel tasks also operate under the GIL.

Why does such an expressive productivity language restrict the language to these rules?

The reason is the level of abstraction the language design adopted. It ships with many tools to wrap

C code, from ctypes to cffi. It prefers multiprocessing over multithreading in the base language, as

evidenced by the multiprocessing package in the native Python library. These two design ideas are

evident in some of the popular packages, like NumPy* and SciPy*, which use C code under the Python

API to dispatch to a mathematical runtime library such as Intel® Math Kernel Library (Intel® MKL) or

OpenBLAS*. The community has adopted the paradigm to dispatch to higher-speed C-based libraries,

and has become the preferred method to implement parallelism in Python.

In the combination of these accepted methods and language limitations are options to escape them

and apply parallelism in Python through unique parallelism frameworks:

 • Numba* allows for JIT-based compilation of Python code which can also run LLVM*-based Python-
compatible code.

 • Cython* gives Python-like syntax with compiled modules that can target hardware vectorization as it
compiles to a C module.

 • numexpr* allows for symbolic evaluation to utilize compilers and advanced vectorization.

These methods escape Python’s GIL in different ways while preserving the original intent of the

language, and all three implement different models of parallelism.

Let’s take the general example of one of the most common language constructs on which we’d want

to apply parallelism—the for loop. Looking at the loop below, we can see that it provides a basic

service, returning all the numbers less than 50 in a list:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mkl

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

Running this code gives the following result:

Python handles the list of items in a single-threaded way under the GIL, since it’s written in pure Python.

Thus, it handles everything sequentially and doesn’t apply any parallelism to the code. Because of the way

this code is written, it’s a good candidate for the Numba framework. Numba uses a decorator (with the @

symbol) to flag functions for just-in-time (JIT) compilation, which we’ll try to apply on this function:

Running this code now gives the following result:

Including this simple decorator nearly doubled performance. This works because the original Python

code is written in primitives and datatypes that can be easily compiled and vectorized to a CPU. Python

lists are the first place to look. Normally, this data structure is quite heavy with its loose typing and built-in

allocator. However, if we look at the datatypes that random_list contains, they’re all integers. Because

of this consistency, the JIT compiler of Numba can vectorize the loop.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

If the list contains mixed items (e.g., a list of chars and ints), the compiled code will throw a TypeError

because it can’t handle the heterogeneous list. Also, if the function contains mixed datatype operations,

Numba will fail to produce a high-performance JIT-compiled code and will fall back to Python object code.

The lesson here is that achieving parallelism in Python depends on how the original code is written.

Cleanliness of datatypes and the use of vectorizable data structures allow Numba to parallelize code with

the insertion of a simple decorator. Being careful about the use of Python dictionaries pays dividends,

because historically they don’t vectorize well. Generators and comprehensions suffer from the same

problem. Refactoring such code to lists, sets, or arrays can facilitate vectorization.

Parallelism is much easier to achieve in numerical and symbolic mathematics. NumPy and SciPy do a great

job dispatching the computation outside of Python’s GIL to lower-level C code and the Intel MKL runtime.

Take, for example, the simple NumPy symbolic expression, ((2*a + 3*b)/b), expressed below:

This expression makes multiple trips through the single-threaded Python interpreter because of the

structure and design of NumPy. Each return from NumPy is dispatched to C and returned back to the

Python level. Then, the Python object is sent to each subsequent call to be dispatched to C again. This

back-and-forth jumping becomes a bottleneck in the computation, so when you need to compute custom

kernels that can’t be described in NumPy or SciPy, numexpr is a better option:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

How does numexpr achieve nearly a 4x speedup? The previous code takes the symbolic representation

of the computation into numexpr’s engine to generate code that works with the vectorization

commands from the vector math library in Intel MKL. Thus, the entire computation stays in low-level

code before completing and returning the result back to the Python layer. This method also avoids

multiple trips through the Python interpreter, cutting down on single-threaded sections while also

providing a concise syntax.

By looking at the Python ecosystem and evaluating the different parallelism frameworks, it’s evident that

there are good options. To master Python parallelism, it’s important to understand the tools and their

limitations. Python chose the GIL as a design consideration to simplify framework development and give

predictable language behavior. But, at the end of the day, the GIL and its single-threaded restrictions are

easy to sidestep with the right tools.

Learn More
 • Intel® Distribution for Python
 • Intel® Math Kernel Library

BLOg HIgHLIgHTs

Read more >

10 Huge Benefits of Edge AI & the Software Tools to Deliver Them
CHARLOTTE DRYDEN, INTEL CORPORATION

Artificial Intelligence (AI) continues to show up in our everyday lives, but its presence is gentle and
welcome, largely due to the advancements in Edge AI. Many AI use cases are best suited for the
edge where processing happens at or close to the data source, lowering costs, reducing application
or service latency, improving reliability and increasing data privacy.

Whether we realize it or not, Edge AI technologies—seen and unseen—provide huge benefits
in a world that’s digitally connected, 24x7. This rapid advancement of Edge AI is not because of
one or two “killer apps”—new solutions and usages continue to emerge all the time.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/blogs/2018/12/14/10-huge-benefits-of-edge-ai-the-software-tools-to-deliver-them

Welcome to Tech.Decoded, the
Knowledge Hub for Developers

You’ll find an always-growing library of
information curated to help you get the
most out of modern hardware. Boost your
competitive edge. And get to market faster.

Get Expert Insights
Watch tech forecasters and visionaries explore
today’s tech landscape: code modernization,
systems and IoT, data science, and more.

Dig Deeper
Learn how to get every last ounce of
performance from your code with on-
demand webinars covering today’s most
important strategies, practices, and tools.

Put it All to Work in your Code
Use short videos and articles to understand
the how-to’s of key programming tasks using
specific development tools.

DEcODE yOuR
TEcH FuTuRE

Software

ExpLORE TEcH.DEcODED nOw >
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
© Intel Corporation

https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

Kevin O’Leary and Alex Shinsel, Technical Consulting Engineers, Intel Corporation

How your application accesses memory dramatically impacts performance. It’s not enough to parallelize your

application by adding threads and vectorization. Effective use of memory bandwidth is just as important. But

often, software developers just don’t understand it. Tools that help minimize memory latency and increase

bandwidth can help pinpoint performance bottlenecks and diagnose their causes. One such tool is Intel®
Advisor, which has features to help optimize memory access and eliminate memory bottlenecks:

 • Roofline analysis with the new Integrated Roofline feature

 • Memory Access Pattern Analysis (MAP)
 • Memory Footprint analysis

Understanding How Your Program is Accessing Memory
Helps You Get More from Your Hardware

REMOVE MEMORy BOTTLEnEcks usIng InTEL® aDVIsOR

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

Getting Great Performance
To get top performance out of your application, you need to know how well you’re using all system

resources. You can see some useful metrics on your overall program in the Intel Advisor Summary

view (Figure 1), which gives you an indication of how well the application is vectorized.

1 Intel® Advisor Summary view

You’ll also need to systematically investigate the loops in your program that are taking the most time.

A key metric for this is Vectorization Efficiency (Figure 2). In this example, Intel Advisor is showing a

vectorization gain of 2.19x. But this only gives us a vectorization efficiency score of 55%. Where did

we lose 45% of our efficiency? There are many factors that can cause inefficient vectorization.

2 Intel Advisor Vectorization Efficiency view

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

Performance Problems

Bad Access Pattern
Indirect memory access is a common cause of slowdowns. Notice in the following code snippet that we

can’t decode A without first decoding B[i]:

This gives us an irregular access pattern. The compiler can often vectorize this by using a technique

called gather/scatter―which is great because it allows that loop to vectorize, but bad because these

gather/scatter instructions aren’t as fast as sequential access. For fast code, it’s important to try to have

your data structures arranged so that data is accessed in unit stride. (You’ll see how Intel Advisor can

show you this information later.)

Memory Subsystem Latency/Throughput
Getting your code to fit into the various memory caches, and making optimal use of data reuse, are

crucial to getting the best performance out of your system. In the following example we’re indexing by i

over a very large piece of data. This data is too big to fit in cache, which is bad―and made doubly so by

A being a multidimensional array:

References to A[i][j] and A[i+1][j] are not located next to each other in memory. So, to get each new

reference, we need to bring in a new cache line―and potentially evict a cache line. This “cache thrashing” will

have a negative impact on performance. Techniques such as cache blocking, where we add a new inner loop that

indexes over a much smaller range that is designed to fit in cache, can help optimize these types of applications.

Branchy Code
Applications with a lot of branches (e.g., the for loop below with the if(cond(i)) can be vectorized

using mask registers to block the SIMD lanes where the condition is not true. In these iterations, a SIMD

lane does not do useful work. Intel Advisor uses the Mask utilization metric (Figure 3). Three elements

are being suppressed, giving us a Mask utilization of 5/8 = 62.5%.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

3 Mask utilization metric

You could potentially access your data in a unit stride fashion and have excellent vector efficiency, but still not get

the performance you need because of low mask utilization (Figure 4). Table 1 shows Memory access types.

4 Mask utilization versus efficiency

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Access Pattern Small Memory Footprint Large Memory Footprint

Unit Stride • Effective SIMD
 • No latency or bandwidth

bottlenecks

 • Effective SIMD
 • Bandwidth bottleneck

Constant Stride • Medium SIMD

 • Latency bottlenecks possible

 • Medium SIMD

 • Latency and
bottlenecks possible

Irregular Access,
Gather/Scatter

 • Bad SIMD

 • Latency bottlenecks possible

 • Bad SIMD

 • Latency Bottlenecks

Table 1. Memory access types

Are You Bound by CPU/VPU or Memory?
If your application is memory bound, there are several features in Intel Advisor that can help you

optimize. But first, you need to determine if you’re memory bound or CPU/VPU bound. A quick way to

determine this is by looking at your instructions. The Intel Advisor Code Analytics windows (Figure 5)

can give you a very basic way to see the mix of instructions that you’re code is executing.

5 Code Analytics windows

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

A good rule of thumb is that applications that are executing a lot of memory instructions tend to be

memory bound, whereas those that are executing a lot of compute instructions tend to be compute

bound. Notice the breakdown in Figure 5. The ratio of scalar to vector instructions is particularly

important. You should try to have as many vector instructions as possible.

Another, slightly more complicated, technique is to use the Traits column in the Intel Advisor Survey

view (Figure 6).

6 Traits column in the Intel Advisor Survey view

Think of Traits as what the compiler needed to do to vectorize your loop. In the latest vector instructions

sets, such as Intel® AVX-512, there are many new instructions and idioms the compiler can use to

vectorize your code. Techniques like register masking and compress instructions, shown in Figure 6,

do allow applications to vectorize when this was not previously possible—but sometimes at a cost.

Anything the compiler needed to do to get your data structures to fit in a vector (such as memory

manipulation) will often appear in the Traits column. These Traits often indicate a problem that you can

explore with Memory Access Pattern analysis.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

Helpful Optimization Features

Roofline Analysis
A Roofline chart is a visual representation of application performance in relation to hardware limitations,

including memory bandwidth and computational peaks. It was first proposed by researchers at the

University of California at Berkeley in the 2008 paper “Roofline: An Insightful Visual Performance
Model for Multicore Architectures.” In 2014, this model was extended by researchers at the

Technical University of Lisbon in a paper called “Cache-Aware Roofline Model: Upgrading the
Loft.” Traditionally, Roofline charts have been calculated and plotted manually. But Intel Advisor now

automatically builds Roofline plots.

The Roofline provides insight into:

 • Where your performance bottlenecks are

 • How much performance is left on the table because of them

 • Which bottlenecks are possible to address, and which ones are worth addressing

 • Why these bottlenecks are most likely occurring

 • What your next steps should be

7 Roofline analysis

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://ieeexplore.ieee.org/document/6506838
https://ieeexplore.ieee.org/document/6506838

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

The horizontal lines in Figure 7 represent the number of floating-point or integer computations of a

given type your hardware can perform in a given span of time. The diagonal lines represent how many

bytes of data a given memory subsystem can deliver per second. Each dot is a loop or function in

your program, with its position indicating its performance, which is affected by its optimization and its

arithmetic intensity (AI).

Intel Advisor Integrated Roofline
The Integrated Roofline model offers a more detailed analysis, showing directly where the bottleneck

comes from. Intel Advisor collects data for all memory types using cache simulation (Figure 8).

8 Cache simulation in Intel Advisor

With this data, Intel Advisor counts the number of data transfers for a given cache level and computes

the specific AI for each loop and each memory level. By observing the changes in this traffic from one

level to another, and then comparing it to respective roofs representing the best possible bandwidths

for these levels, it’s possible to pinpoint the memory hierarchy bottleneck for the kernel and determine

optimization steps (Figure 9).

LEaRn
MOREInTEL® aDVIsOR

Optimize Code for Modern Hardware

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

9 Pinpointing the memory hierarchy bottleneck

Memory Access Pattern (MAP) Analysis
Intel Advisor MAP analysis gives you the deepest insight into how you’re accessing memory. Your

memory access pattern affects both the efficiency of vectorization as well as how much memory

bandwidth you can ultimately achieve. The MAP collection observes data accesses during execution and

spots the instructions that contain the memory accesses. The data collected and analyzed appears in

the Memory Access Patterns Report tab of the Refinement Reports window.

To run a MAP analysis from the GUI (Figure 10), you need to select loops using the checkboxes in the

Survey report and run a MAP collection.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

10 Memory Access Patterns report

You can also run a MAP collection from the command-line. Use the -mark-up-list option to select

loops to be analyzed.

The Memory Access Patterns report provides information about the types of strides observed in the

memory access operations during loop execution. The tool reports both unit/uniform and constant

strides (Figure 11).

Unit/Uniform Stride Types
 • Unit stride (stride 1) instruction accesses memory that consistently changes by one element from

iteration to iteration.

 • Uniform stride 0 instruction accesses the same memory from iteration to iteration.

 • Constant stride (stride N) instruction accesses memory that consistently changes by N elements (N>1)
from iteration to iteration.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

Variable Stride Types
 • Irregular stride instruction accesses memory addresses that change by an unpredictable number of

elements from iteration to iteration.

 • Gather (irregular) stride is detected for v(p)gather* instructions on AVX2 Instruction Set
Architecture.

11 Stride types

Double-click any line in the Memory Access Patterns report tab to see the selected operation's source

code (Figure 12).

The Source and Details views (Figure 13) both give you insights into another key Intel Advisor memory

feature, Memory Footprint.

Memory Footprint Analysis
Memory Footprint is basically the range of memory a given loop accesses. This footprint can be a key

indicator of your memory bandwidth. If the range is very large, then you might not be able to fit in

cache. Optimization strategies such as cache blocking can make a big difference in these cases. Intel

Advisor has three different memory footprint metrics (Figure 14).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

12 See the selected operation's source code

13 Details view

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

14 Memory footprint metrics

Two basic footprint metrics represent just some aspects of your memory footprint. These metrics are

collected by default in Memory Access Pattern (MAP) analysis:

 • Max Per-Instruction Address Range represents the maximum distance between minimum and
maximum memory address values accessed by instructions in this loop. For each memory access
instruction, the minimum and maximum address of its access is recorded and the maximum range
of this address for all loop instructions is reported. It covers more than one loop instance, with some
filtering, which is why sometimes Intel Advisor is less confident in this metric and reports it in gray.

 • First Instance Site Footprint is a more accurate memory footprint, since it’s aware of overlaps in
address ranges in the loop iterations and gaps between address ranges accessed by the loop, but is
calculated only for the first instance (call) of this loop.

There’s a more advanced footprint calculated based on cache simulation, called the Simulated Memory

Footprint. This metric shows the summarized and overlap-aware picture across all loop instances,

but limited to one thread. It is calculated as the number of unique cache lines accessed during cache

simulation multiplied by cache line size. To enable it in the GUI, select the Enable CPU cache simulation

checkbox in the Memory Access Patterns tab of the Project Properties, and select Model Cache Misses

and Loop Footprint Simulation Mode in the dropdown list (Figure 15). Then select the loops of interest

with the checkboxes in the Survey view and run a MAP analysis.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

15 Simulated Memory Footprint

To enable in the command-line, you need to use the MAP command, as previously specified, with these

options: -enable-cache-simulation and -cachesim-mode=footprint.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

You can see the results of the analysis in the Intel Advisor GUI Refinement Report view (Figure 16). The

more detailed cache-related metrics―like the total number of memory loads, stores, cache misses,

and cache-simulated memory footprint―allow a more detailed study of loop behavior with respect

to memory. Table 2 shows Intel Advisor footprint metrics applicability, limitations, and relevance for

analyzing different types of codes.

16 Intel Advisor GUI Refinement Report view

Max Per-
Instruction

Address Range

First Instance Site
Footprint

Simulated
Memory
Footprint

Threads analyzed for the loop/site 1 1 1

Loop instances analyzed
All instances,

but with some
shortcuts

1, only first
instance

Depends on
loop-call-count

limit option
Aware of address range overlap? No Yes Yes
Suitable for codes with random

memory access No No Yes

Table 2. Intel Advisor footprint metrics

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

A Real-World Example
Some of the most common problems in computational science require matrix multiplication. The list of

domains that use matrices is almost endless, but artificial intelligence, simulation, and modeling are just

a few examples. The sample algorithm below is a triply nested loop where we do a multiply and an add

for each iteration. Besides being very computationally intensive, it also accesses a lot of memory. Let’s

use Intel Advisor to see how much.

Create a Baseline
The elapsed time was 53.94 seconds for our initial run. Figure 17 is a Cache-aware Roofline chart. The

red dot is our main computational loop. It’s far below even DRAM bandwidth, and even farther below L1

bandwidth, which is the maximum bandwidth we’re trying to achieve. You can see the precise bandwidth

we’re achieving at each level of the memory hierarchy using the Code Analytics tab for the loop (Figure 18).

Why is our performance so poor? How can we do better? These are questions Intel Advisor was

designed to answer. First, we need to examine the Survey view (Figure 19) to see what’s going on and

whether Intel Advisor has any recommendations. Intel Advisor has noted that we have an Inefficient

memory access pattern, and also that the loop has not been vectorized because of an assumed

dependency. To examine the memory access pattern, we can run a Memory Access Pattern (MAP)

analysis (Figure 20).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

17 Cache-aware Roofline chart

18 Data transfers and bandwidth

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

19 Survey view

20 Memory Access Pattern (MAP) analysis

Intel Advisor has detected a constant stride on our read access and a uniform stride of 0 for the write.

The range of memory we’re accessing is 32MB, far bigger than any of our cache sizes (Figure 21). We

can also see how well the caches are performing using the MAP report (Figure 22). We’re missing over

2,300 cache lines, so it’s no wonder performance is bad. But there are several ways we can fix this.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

21 Strides distribution

22 MAP report

Step 1
Do a loop interchange so that we don’t need a constant stride and also don’t need to access memory

over such a wide range. We can also vectorize the loop by including a pragma ivdep that informs the

compiler that we don’t have a dependency that prevents vectorization.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

The elapsed time for our new run is 4.12 seconds, an improvement of more than12x. Why is our new

performance so much better? First, let’s take a look at our Integrated Roofline chart (Figure 23). Each of

the red circles represents the bandwidth of the corresponding memory hierarchy: L1, L2, L3, and DRAM.

We can see that our computational loop’s L1 memory bandwidth, represented by the leftmost red circle,

is now 95 GB/second. We can also use the Survey view (Figure 24) to see that we’re also now vectorized

at 100% efficiency using AVX2 instructions.

23 Integrated Roofline chart

24 Survey view

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

Our MAP report (Figure 25) informs us that all our accesses are now unit stride and the maximum address

range is 16KB, well within the range of our cache size. Our cache is also performing much better (Figure 26).

We’ve dropped to 512 cache misses, down from 2,302. So we’re getting better performance, but we’re still

not near the peak.

25 Map report

26 Cache performance

Step 2
Implement cache-blocking so that our computations are over a smaller range of memory:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

In the above code, we’re adding three additional nested loops so that we do our computations in

sections (or blocks). After we’re done with one block, we move to the next. The elapsed time of our

cache-blocked case is 2.60 seconds, a 1.58x improvement from the previous run (Figure 27). Our

loop’s L1 memory bandwidth is now 182 GB/second, much closer to the L1 roof. Our vectorization

and striding have not changed, but we now have only 15 cache misses for our inner loop, and our

address range has been reduced to 480 bytes (Table 3).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

27 Performance improvements

Run Time
Elapsed,
Seconds

Total GFlops Memory
Address
Range

Cache
Misses

Improvement
(Time)

Baseline 53.94 0.32 32 MB 2,302 N/A
(baseline)

Loop
Interchange 4.19 4.17 16 KB 511 12.87x

Blocked 2.6 6.61 480 B 15 20.74x

Table 3. Summary of results

Optimizing Memory Accesses
It’s crucial to optimize the memory accesses of your program. Understanding how your program is

accessing memory, using a tool like Intel Advisor, can help you get the most out of your hardware. By

using the Roofline and new Integrated Roofline features of Intel Advisor, you can visualize your memory

bottlenecks. You can get even greater memory insight when you combine Roofline features with Memory

Access Pattern analysis.

Related Resources
 • Intel Advisor Roofline
 • Intel Advisor Integer Roofline
 • Intel Advisor Integrated Roofline

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor
https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

HOw’D THEy DO THaT?

Developers worldwide have upped the ante for
application performance, scalability, and portability

with Intel® Software Development Tools.
And they’re sharing their stories

to help you do the same.

ExpLORE > Software
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/sdp-case-studies#Intel Parallel Studio
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

63The Parallel Universe

Nitya Hariharan, Amarpal Singh Kapoor, and Rama Kishan Malladi, Technical Marketing
Engineers, Core and Visual Computing Group, Intel Corporation; Md Vasimuddin, Research
Scientist, Parallel Computing Lab, Intel Labs

For an application to be truly scalable, every section must scale linearly―or at least tend toward linear

scalability. Amdahl’s Law tells us that a small serial fraction, or a poorly scaling parallel code section, can

have a significant impact on the overall scalability of the application. This article focuses on one such

section of HPC applications that tends to be serial: file I/O. We demonstrate the use and performance

benefits of non-blocking MPI* I/O calls in the context of some real-world HPC applications.

Speeding Up I/O for HPC Applications

MpI-3* nOn-BLOckIng I/O cOLLEcTIVEs
In InTEL® MpI LIBRaRy

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

64The Parallel Universe

MPI provides non-blocking calls to allow developers to benefit from overlapping communication and

computation, communication with other communication, and to aid I/O-intensive codes. [In Issue 33 of
The Parallel Universe1, the article “Hiding Communication Latency Using MPI-3 Non-Blocking Collectives”

demonstrates the use and benefits of non-blocking collective (NBC) communication. This article focuses

on non-blocking I/O (e.g., MPI_File_iwrite_at).]

NBC I/O
NBC I/O operations are attractive because they can take advantage of both non-blocking and collective

operations2. Non-blocking calls have the potential of hiding I/O cost by allowing execution of other

independent computations in parallel. Apart from maximizing the hardware utilization, the non-blocking

nature of these I/O calls also helps hide the synchronization costs of delayed processes. Another

motivation to consider optimizations of this nature is the lower I/O performance relative to computation.

We’ll look at two application codes, LAMMPS* and BWA-MEM*, to study the performance gains from using

non-blocking I/O calls. LAMMPS is a molecular dynamics application with a focus on material modeling3.

BWA-MEM* is one of the most popular tools for mapping short DNA fragments, also called reads, to

reference sequences such as the human genome4. Both use MPI I/O, making them good candidates to test

NBC I/O.

Test Case 1: LAMMPS
LAMMPS executes using an input file with a command in each line. Each command causes LAMMPS to

take an action (e.g., set an internal variable or run a simulation for a given number of time steps). The

Dump command looks like this:

For our I/O testing, we used the 3D Lennard-Jones (LJ) workload and added a Dump command to

the input file. The corresponding inputs provided for the test are:

(Details of each input to the Dump command are given in reference 4 at the end of this article.)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/sites/default/files/parallel-universe-issue-33.pdf
https://software.intel.com/sites/default/files/parallel-universe-issue-33.pdf

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

65The Parallel Universe

The code maintains a list of dumps that need to be done and checks the list to determine the dumps that

need to be done at every N time step. The atom data to be written is copied out to a string buffer. And the

offset into the output file is calculated by each MPI rank. Then, the collective, blocking MPI I/O call

MPI_File_write_at_all is used to write the data to the file.

Here’s the baseline code using a blocking MPI_File_write_at_all:

Here’s the optimized code using a non-blocking MPI_File_iwrite_at:

Given that the data being written in each iteration is independent, we can make use of an NBC I/O call

here to overlap computation and file I/O. Since the offset into the file is already being calculated for

each rank to prepare for MPI I/O, we only need to change the code to use the NBC I/O call and add the

corresponding wait.

Also, each MPI rank writes independently to the file, so we use the non-blocking MPI_File_iwrite_at

call instead of the collective, non-blocking MPI_File_iwrite_at_all call. To ensure good overlap of

computation and I/O, we use a “prologue” and “epilogue” phase (i.e., a double-buffering algorithm), which

uses different buffers to issue the asynchronous write for different iterations. We keep track of the number

of writes being issued to decide which buffer to use and issue the MPI_Wait call for the previous iteration

in the current iteration. This ensures correct buffer reuse.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

66The Parallel Universe

Figure 1 shows the speedup for MPI I/O and the total runtime for the LJ workload (10,000 time steps with

a data dump every 20 time steps) at increasing node counts (two MPI processes per node and 20 OpenMP

threads per MPI rank). The runs were done on an Intel® Xeon® Gold 6148 processor-based cluster with

two sockets per node connected by Intel® Omni-Path Architecture. The I/O and total runtime were

measured using the default timers in LAMMPS. Note that the speedup in I/O time doesn’t translate into a

corresponding speedup in the total runtime. However, the parallel, non-blocking I/O does improve overall

performance, even doubling the application performance at eight nodes.

1 Speedup from MPI I/O time and total run time for LAMMPS

Test Case 2: BWA-MEM

In next-generation sequencing (NGS) applications, sequence mapping is compute-intensive. As a primary

step in the GATK (Genome Analysis ToolKit) workflow5―a popular workflow for genome assembly and

finding genetic variants―sequence mapping accounts for 30% of the overall runtime. BWA-MEM6 is one

of the most popular tools for mapping short DNA reads to reference genome sequences. Given a set of

input sequences, BWA-MEM tries to find their most probable positions in the reference sequence.

BWA-MEM supports and scales well on a distributed-memory system and makes use of MPI I/O for

writing its output. The code samples below show implementations using an MPI I/O blocking call and an

optimization using non-blocking MPI I/O. Here’s the baseline code using a blocking MPI_File_write_at:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/gold-processors.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

67The Parallel Universe

Here’s the optimized code using a non-blocking MPI_File_iwrite_at:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

68The Parallel Universe

Figure 2 shows the BWA-MEM performance improvement using NBC MPI I/O (two MPI processes per

node and 20 threads per MPI rank). The runs were done on an Intel Xeon Gold 6148 processor-based

cluster with two sockets per node connected by Intel Omni-Path Architecture. Parallel, non-blocking I/O

improves the performance of each test.

2 BWA-MEM performance improvement using NBC MPI I/O

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

69The Parallel Universe

Speeding Up I/O for HPC Applications
Modern HPC applications are quite complex and often deal with iterative solution procedures. As a

consequence, several solution steps need to be written to a file in addition to safe-keeping mechanisms

like writing additional restart/temporary files, should the current run fail. Moving to MPI I/O is the first step

for efficiently handling I/O in an HPC environment. This article demonstrated speedups with non-blocking

MPI I/O calls for two real applications: LAMMPS and BWA-MEM. The code changes also highlight the ease

of using NBC MPI I/O in these applications.

References
1The Parallel Universe, Issue 33

2Seo S., Latham R., Zhang J., and Balaji P. “Implementation and Evaluation of MPI Nonblocking Collective

I/O.”

3S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J Comp Phys, 117, 1-19

(1995).

4LAMMPS dump command: https://lammps.sandia.gov/doc/dump.html

5M. Vasimuddin, S. Misra, and S. Aluru, “Identification of Significant Computational Building Blocks through

Comprehensive Investigation of NGS Secondary Analysis Methods,” [Preprint] bioRXiv, April 2018

6Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

arXiv:1303.3997v1 [q-bio.GN].

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/sites/default/files/parallel-universe-issue-33.pdf
https://lammps.sandia.gov/doc/dump.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

70The Parallel Universe

yOuR pyTHOn*

sHOuLDn’T BITE.

FREE DOwnLOaD >
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Supercharge your applications with
Intel® Distribution for Python.*

Software

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/articles/optimization-notice#opt-en

Software

THE paRaLLEL
unIVERsE

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. § For
more information go to www.intel.com/benchmarks.

 Performance results are based on testing as of October 1, 2018, and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be
absolutely secure.

 For more information regarding performance and optimization choices in Intel® Software Development Products, see our Optimization Notice: https://software.intel.com/articles/optimi-
zation-notice#opt

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retaile. No license (express or implied, by estoppel or otherwise) to any intellectual
property rights is granted by this document.

 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel repre-
sentative to obtain the latest forecast, schedule, specifications and roadmaps.

 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available
on request.

 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
 Copyright © 2019 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
 * Other names and brands may be claimed as the property of others. Printed in USA 0119/SS Please Recycle

