
Detecting CPU Capabilities Using Unreal
Engine* 4.19

With the release of Unreal Engine* 4.19, many features have been optimized for multicore
processors. In the past, game engines traditionally followed console design points, in terms
of graphics features and performance. In general, most games weren’t optimized for the
processor, which can leave a lot of PC performance sitting idle. Intel’s work with Unreal
Engine 4 is focused on unlocking the potential of games as soon as developers work in the
engine, to fully take advantage of all the extra processor computing power that a PC
platform provides.

Intel's enabling work for Unreal Engine* 4.19 delivered the following:

 Increased the number of worker threads to match a user’s processor

 Increased the throughput of the cloth physics system

 Integrated support for Intel® VTune™ Amplifier

To take advantage of the additional computing power on high-end CPUs, Intel has
developed a plugin that gives detailed CPU metrics and SynthBenchmark performance
indicators. The metrics from this plugin can be used to differentiate features and content by
CPU capability. Binning features and content in this manner will allow your game to run on a
range of systems without impacting the overall performance.

Unreal Engine* 4.19 Capability Detect Plugin

Using the Capability Detect Plugin, you can access C++ and Blueprint-compatible helper
functions for CPU metrics, render hardware interface (RHI) functions, and the
SynthBenchmark performance indexes for the CPU/GPU.

Table 1: CPU Detect Functions

CPU Functions

Third Party Function Blueprint Function Description

Intel_IsIntelCPU() IsIntelCPU() Returns TRUE if

Intel CPU

Intel_GetNumLogicalCores() GetNumLogicalCores() Returns Number of

Logical Cores

CPU Functions

Third Party Function Blueprint Function Description

Intel_GetNumPhysicalCores() GetNumPhysicalCores() Returns Number of

Physical Cores

Intel_GetCoreFrequency() GetCoreFrequency() Returns the current

Core Frequency

Intel_GetMaxBaseFrequency() GetMaxBaseFrequency() Returns the

Maximum Core

Frequency

Intel_GetCorePercMaxFrequency() GetCorePercMaxFrequency() Returns % of

Maximum Core

Frequency in use

Intel_GetFullProcessorName() GetFullProcessorName() Returns Long

Processor Name

Intel_GetProcessorName() GetProcessorName() Returns Short

Processor Name

Intel_GetSKU() N/A Not in Use

Table 2: Cache and Memory Detect Functions

Cache and Memory Functions

Third-Party Function Blueprint Function Description

Intel_GetCacheSizeMB() GetCacheSizeMB() Returns Cache Size in

MB

Cache and Memory Functions

Third-Party Function Blueprint Function Description

Intel_GetUsablePhysMemoryGB() GetUsablePhysMemoryGB() Returns Usable

Physical Memory in

GB

Intel_GetComittedMemoryMB() GetComittedMemoryMB() Returns Committed

Memory in MB

Intel_GetAvailableMemoryMB() GetAvailableMemoryMB() Returns Available

Memory in MB

Table 3: Render Hardware Interface (RHI) Wrapper Functions

RHI Wrapper Functions

Third-Party Function Blueprint Function Description

N/A IsRHIIntel() Returns TRUE if GPU is Intel

N/A IsRHINVIDIA() Returns TRUE if GPU is NVIDIA

N/A IsRHIAMD() Returns TRUE if GPU is AMD

N/A RHIVendorName() Returns Vendor Name of GPU

Table 4: SynthBenchmark Wrapper Functions

SynthBenchmark Wrapper Functions

Third-Party Function Blueprint Function Description

N/A ComputeCPUPerfIndex() 100: avg. good CPU, <100:slower,

>100:faster

N/A ComputeGPUPerfIndex() 100: avg. good GPU, <100:slower,

>100:faster

SynthBenchmark

When using the SythBenchmark wrappers, be aware that the first call of
each ComputeCPUPerfIndex() and ComputeGPUPerfIndex() will incur a slight performance
cost while the performance indexes are computed. Performance index values are cached
after the first call and subsequent calls to
either ComputeCPUPerfIndex() or ComputeGPUPerfIndex() will not have the additional
overhead of running the benchmark. For performance-critical aspects of your game it is
recommended to call both of these functions during startup or loading screens.

Installing the Capability Detect Plugin

1. Download the Capability Detect Plugin
from https://github.com/GameTechDev/UnrealCapabilityDetect/releases/tag/1.0 and open
the project folder.

https://github.com/GameTechDev/UnrealCapabilityDetect/releases/tag/1.0

2. If the Plugins folder doesn’t exist in the root directory, add it now.

3. Extract the CapabilityDetect plugin into the Plugins folder.

4. Launch the project using the .uproject file.

5. Go to Edit->Plugins in the main menu. When the Plugin window loads, the Capability Detect
Plugin should be installed in the project.

Now that the plugin is installed, it can be used to differentiate game content and features. In
the next section we’ll describe how to use this plugin to bin features by CPU capabilities.

Unreal Engine 4.19 Feature Differentiation

Detecting capabilities

In order to segment features by platform configuration, create a new UDataAsset named
UPlatformConfig. UPlatformConfig will store the characteristics of the platform being
targeted such as the number of physical cores, logical cores, usable physical memory,
processor name, and/or SynthBenchmark performance index.

#include "CoreMinimal.h"

#include "Engine/DataAsset.h"

#include "PlatformConfig.generated.h"

/**

 * Platform Configuration Data Asset

 */

UCLASS(BlueprintType)

class CAPABILITYDETECTDEMO_API UPlatformConfig : public UDataAsset

{

 GENERATED_BODY()

public:

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float CPUPerfIndex;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 FString Name;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 bool IsIntelCPU;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 int NumPhysicalCores;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 int NumLogicalCores;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float UsablePhysMemoryGB;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float ComittedMemoryMB;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float AvailableMemoryMB;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float CacheSizeMB;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float MaxBaseFrequency;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float CoreFrequency;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 float CorePercMaxFrequency;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 FString FullProcessorName;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =

"Platform Configuration")

 FString ProcessorName;

};

Next, we can set up a class called UPlatformTest with static functions to
compare UPlatformConfig properties to the capabilities detected by the plugin.

#include "CoreMinimal.h"

#include "PlatformTest.generated.h"

class UPlatformConfig;

/**

 * Static functions for testing capabilities.

 */

UCLASS(BlueprintType)

class CAPABILITYDETECTDEMO_API UCapabilityTest : public UObject

{

 GENERATED_BODY()

public:

 UFUNCTION(BlueprintCallable, Category = "Capabilities")

 static bool CapabilityTest(UPlatformConfig* config);

 UFUNCTION(BlueprintCallable, Category = "Capabilities")

 static UPlatformConfig* GetCapabilityLevel();

};

The CapabilityTest() function will compare a UPlatformConfig to features detected by the
Capability Detect Plugin. In this case, we will check if physical cores, logical cores, and the
SynthBenchmark CPU performance index exceed the properties of
the UPlatformConfig passed into the function.

bool UCapabilityTest::CapabilityTest(UPlatformConfig* config)

{

 // True if system capabilities exceed platform definitions

 return

 UCapabilityDetectBPLib::GetNumPhysicalCores() >= config-

>NumPhysicalCores

 && UCapabilityDetectBPLib::GetNumLogicalCores() >= config-

>NumLogicalCores

 && UCapabilityDetectBPLib::ComputeCPUPerfIndex() >= config-

>CPUPerfIndex;

}

Now that we have a way to compare capabilities we can create another function to setup
and test platform configurations. We’ll create a function called GetCapabilityLevel() and
create four segmentation levels named LOW, MEDIUM, HIGH, and ULTRA. We’ll provide a
name that corresponds to the feature level and specify the physical/logical cores, and
SynthBenchmark performance index for each configuration being tested. Finally, since we
are using a greater-than-or-equal symbol for the comparison in CapabilityTest(), we will test
from highest to lowest and return the result.

UPlatformConfig* UCapabilityTest::GetCapabilityLevel()

{

 // Create Platform Definitions

 UPlatformConfig *ULTRA, *HIGH, *MEDIUM, *LOW;

 ULTRA = NewObject<UPlatformConfig>();

 HIGH = NewObject<UPlatformConfig>();

 MEDIUM = NewObject<UPlatformConfig>();

 LOW = NewObject<UPlatformConfig>();

 // Assign Properties to platform definitions.

 // LOW - 2 Physical Cores 4 Hyper-threads

 LOW->Name = TEXT("LOW");

 LOW->NumPhysicalCores = 2;

 LOW->NumLogicalCores = 4;

 LOW->CPUPerfIndex = 0.0;

 // MEDIUM - 4 Physical Cores 8 Hyper-threads

 MEDIUM->Name = TEXT("MEDIUM");

 MEDIUM->NumPhysicalCores = 4;

 MEDIUM->NumLogicalCores = 8;

 MEDIUM->CPUPerfIndex = 50.0;

 // HIGH - 6 Physical Cores 12 Hyper-threads

 HIGH->Name = TEXT("HIGH");

 HIGH->NumPhysicalCores = 6;

 HIGH->NumLogicalCores = 12;

 HIGH->CPUPerfIndex = 100.0;

 // ULTRA - 8 Physical Cores 16 Hyper-threads

 ULTRA->Name = TEXT("ULTRA");

 ULTRA->NumLogicalCores = 8;

 ULTRA->NumPhysicalCores = 16;

 ULTRA->CPUPerfIndex = 125.0;

 // Test platforms against detected capabilities.

 if (CapabilityTest(ULTRA)) {

 return ULTRA;

 }

 if (CapabilityTest(HIGH)) {

 return HIGH;

 }

 if (CapabilityTest(MEDIUM)) {

 return MEDIUM;

 }

 return LOW;

}

Detecting Capabilities in C++

With the UCapabilityTest class we now have a way to determine CPU feature levels. We
can use the results from GetCapabilityLevel() to differentiate content in either C++ or
Blueprints. For instance, if we create an actor, we can differentiate features in the Tick
function.

// Called every frame

void AMyActor::Tick(float DeltaTime)

{

 Super::Tick(DeltaTime);

 UPlatformConfig* CapabilityLevel = UCapabilityTest::GetCapabilityLevel();

 if (CapabilityLevel->Name == TEXT("LOW"))

 {

 // Use Simple Approximation for LOW end CPU...

 // e.g. Spawn 100 CPU Particles...

 }

 else if (CapabilityLevel->Name == TEXT("MEDIUM"))

 {

 // Use Advanced Approximation for MID range CPU...

 // e.g. Spawn 200 CPU Particles

 }

 else if (CapabilityLevel->Name == TEXT("HIGH"))

 {

 // Use Simple Simulation for HIGH end CPU...

 // e.g. Spawn 300 CPU Particles

 }

 else if (CapabilityLevel->Name == TEXT("ULTRA"))

 {

 // Use Advanced Approximation for ULTRA CPU...

 // e.g. Spawn 400 CPU Particles

 }

}

Detecting Capabilities in Blueprints

Alternatively, we can use the same GetCapabilityLevel() function we used in our actor’s Tick
function in Blueprints, since we decorated it with the UFUNCTION(BlueprintCallable)
attribute. In this case, we are using the level Blueprint and call the Get Capability
Level node after the BeginPlay. The UPlatformConfig value returned by the Get Capability
Level node has a Name property that can be used in a Switch on String node to differentiate
features in your level. Finally, we just print the name of the CPU feature level to the screen
(Figure 1).

Figure 1: Blueprint Capability Detect

Lastly, there is a Blueprint function that comes packaged with the Capability Detect Plugin.
With this function you can get more granularity with your platform details in your Blueprints.
Just add the Detect Capabilities node to your Blueprint and utilize the values you need for
your game (Figure 2).

Figure 2: Detect Capabilities Blueprint Node

Conclusion

With the higher core counts of modern CPUs, we can do much more with our games.
However, players with fewer cores may be at a disadvantage compared to players with
higher-end systems. To alleviate this disparity, it is possible to bin features using both C++
and Blueprints. Binning features as demonstrated will allow for maximum CPU usage while
maintaining a consistent framerate for players with a range of platform configurations.

Notices

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation

http://www.intel.com/design/literature.htm
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/

