
OPRA FAST decoder

Overview

 Application Overview

 Compiler Features
 IO Channels

 Loop Pipelining

 Kernel Implementation

 Host Implementation

2

Application Overview

3

10G OPRA FAST

 10G Ethernet UDP stream

 Headers removed by OpenCL kernel

 Decode compressed OPRA FAST data

 Reconstruct messages

 Platform with 10 GbE I/O channels and
kernels using Altera’s OpenCL

 < .5 uS Latency

4

HFT Trading platform

OpenCL kernels

10G UDP stack

 Rx Tx

M
A

C

IP

U
D

P

Compressed OPRA stream

OPRA decoder
Trading

algorithm

Trading decisions

OPRA

Data

Broadcast

 10G Ethernet 10G Ethernet

OPRA Application

 Application structure
 OPRA FAST decoder kernel written in OpenCL

 The decoder outputs the reconstructed OPRA messages

 Output sent through a kernel to kernel channel for subsequent processing

 Modularity
 Users can plug custom trading kernel

 Currently using a dummy trading kernel for verification

5

Field parsing Field location

decoding

Message

reconstruction

(UDP packets, split

into 8 byte frames)

 10G UDP

Trading

algorithm

 10G UDP

OPRA Decoder kernel Trading kernel

OPRA FAST encoding

 Each message contains several compressed fields

 Presence Map of each message tells us which fields of

the current message are encoded
 Other fields are repeated from the last message or incremented

 Compressed fields are variable number of bytes
 Each byte contains 7 bits of data and ‘stop bit’ for last byte

 Uncompressed fields are fixed size

6

01:02:30:30:30:30:30:31:38:36:33:33:30:30:31:

0c:fe:c8:ce:cf:a0:01:11:c9:2c:29:62:8d:03

SOH Ver. Sequence Number of 1st Message # Msgs in Frame

MsgSz
Presence

Map

Msg

Type
Fields

Trading algorithm

 Dummy trading algorithm for verification purposes
 Demo goal to demonstrate parsing OPRA packets at line rate

 Sending all decompressed data back through UDP would bottleneck the
processing

 Return a subset of the fields
 Required to throttle the amount of data sent out through UDP

 Host configures which field range is returned

7

Compiler Features

8

Altera I/O Channels

 Allows kernels to interface to outside world
 Simple API to read and write data from external sources

 Available channel are board-specific, defined by board designer

 This example uses IO channels connected to a UDP
Offload Engine to communicate over 10 Gbps Ethernet

9

10 G Ethernet
UDP Offload

Engine

OpenCL

Kernel

Source

Sink

kernel void foo(){

 read_channel_altera();

 process_data();

 write_channe_alteral();

}
PCIE Host

Processor

Loop Pipelining: Loop Carried Dependencies

 Loop-carried dependencies are dependencies where

one iteration of the loop depends upon the results of

another iteration of the loop

 The variable state in iteration 1 depends on the value

from iteration 0. Similarly, iteration 2 depends on the

value from iteration 1, etc.

10

__kernel void generate_rngs(ulong num_rnds)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<num_rnds; i++) {
 state = generate_next_state(state);
 unit y = extract_random_number(state);
 write_channel_altera(RANDOM_STREAM, y);
 }
}

Loop Pipelining (2)

 To achieve acceleration, we can pipeline each iteration

of a loop containing loop carried dependencies
 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as possible

11

At this point, we can

launch the next

iteration

__kernel void generate_rngs(ulong num_rnds)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<num_rnds; i++) {
 state = generate_next_state(state);
 unit y = extract_random_number(state);
 write_channel_altera(RANDOM_STREAM, y);
 }
}

Loop Pipelining Example

 No Loop Pipelining

12

i0

i1

i2

 With Loop Pipelining

i0

i1

i2

i3

i4

Looks almost

like ND-

range thread

execution! C
lo

c
k
 C

y
c
le

s

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

Kernel Implementation

13

OPRA Field Parser

 UDP packet split into fixed length frames
 OPRA FAST processing expressed as a loop

 Allow the OpenCL compiler to extract pipeline parallelism from loop iterations

 Each iteration processes one frame

 Fields may span across multiple frames
 Loop carried dependencies

 The compiler understands and generates efficient hardware in the presence of dependencies

14

UDP IP

Pipelined parallel processing of frames

OPRA Decoding Loop

 Every loop iteration, 8 byte frame of data is read from
the UDP interface
 Except in rare case when there is data left from last frame

 The multiple fields of the OPRA message are
constructed from over several iterations of the loop
 As each field is decoded, it is written to a location in the message structure

 When the message is fully parsed, it is sent to the
trading kernel via a kernel-to-kernel channel
 Non-present fields (according to the Presense Map) are maintained from last

message or incremented

 Loop carried dependencies are minimized to allow one
iteration to launch every cycle
 If hardware frequency >= 156.25 MHz , we can saturate the 10G connection

15

Other Kernels

 UDP IO data interface is 16 bytes wide, while the

Decoder kernel takes 8 bytes, two kernels are used as

16-to-8 byte adaptors

 Two kernels are used to choose between sending data

from the IO channels or from global memory

16

Latency measurement

17

UDP stack

latency

OPRA

decoder

latency

Kernel runs @ 192 MHz

25 cycles 38 cycles

0.328 μs

MAC+

UDP

interface

IO

Channel

Decoded

messages

 10G UDP OPRA Decoder

U
D

P
 I

P

 10G XCVR

Host Implementation

18

Host Program

 OPRA Kernels can either communicate over UDP IO

Channels, or by reading and writing to memory

 If UDP IO channels are being used, the host will send

and receive data over UDP sockets to the IP address of

the FPGA card
 10G Ethernet card should be installed in host PC, connected to FPGA card

 The host program forks into two processes, which

allows the host to send and receive data over UDP

independently

 Tested using Solarflare network interface card
 OpenOnload drivers are used to accelerate UDP transfers, and are needed

to consistently saturate the 10G interface

19

Tips for tuning host to achieve line rate

 Host OS is not a real time OS
 System jitter can cause packet loss on the host

 Do not run any unnecessary services or applications

 Run app through demo.sh script
 Does some driver tuning to minimize overhead

 This proves sufficient on the test machine we have on our side

 (Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz)

20

Running the example design

 host/opra [mode] [UDP frames]

 [mode] configures where the data source and

destination are located
 memory input memory output (default, 0)

 UDP input memory output (1)

 Memory input UDP output (2)

 UDP input UDP output (3)

 [UDP frames] specifies how many frames to transmit
 The frames are read from a pcap file that comes with the example

21

Demo output

> host/opra 3 300000

Using AOCX: opra.aocx

Short memory run --> results.txt

Long run, use as reference for subsequent runs

Use compact UDP packets for better throughput

All integrity checks are DONE.

Performance testing: UDP Rx --> OPRA decoder --> UDP Tx

 Verified field 0

 Verified field 1

 Verified field 2

 Verified field 3

 Verified field 4

 OPRA stream throughput: 9.417523 Gbit / s

 (99.7 % of theoretical maximum of 9.446Gb/s)

22

Memory based runs for

integrity checks and

generating reference

data

Multiple UDP runs

In each run, configure the dummy trading

algo to return one field of the message

Max performance

measured across all runs

Thank You Thank You Thank You

