
OPRA FAST decoder 



Overview 

 Application Overview 

 Compiler Features 
 IO Channels 

 Loop Pipelining 

 Kernel Implementation 

 Host Implementation 

2 



Application Overview 

3 



10G OPRA FAST 

 10G Ethernet UDP stream 

 Headers removed by OpenCL kernel 

 Decode compressed OPRA FAST data 

 Reconstruct messages 

 Platform with 10 GbE I/O channels and 
kernels using Altera’s OpenCL 

 < .5 uS Latency 

4 

HFT Trading platform 

OpenCL kernels 

10G UDP stack 

           Rx                                        Tx 

M
A

C
 

IP
 

U
D

P
 

Compressed OPRA stream 

OPRA decoder 
Trading 

algorithm 

Trading decisions 

OPRA 

Data 

Broadcast 

 10G Ethernet  10G Ethernet 



OPRA Application 

 Application structure 
 OPRA FAST decoder kernel written in OpenCL 

 The decoder outputs the reconstructed OPRA messages 

 Output sent through a kernel to kernel channel for subsequent processing 

 Modularity 
 Users can plug custom trading kernel 

 Currently using a dummy trading kernel for verification 

 

5 

Field parsing Field location 

decoding 

Message 

reconstruction 

(UDP packets, split 

into 8 byte frames) 

 10G UDP 

Trading 

algorithm 

 10G UDP 

OPRA Decoder kernel Trading kernel 



OPRA FAST encoding 

 Each message contains several compressed fields 

 Presence Map of each message tells us which fields of 

the current message are encoded 
 Other fields are repeated from the last message or incremented 

 Compressed fields are variable number of bytes  
 Each byte contains 7 bits of data and ‘stop bit’ for last byte 

 Uncompressed fields are fixed size 

 

6 

01:02:30:30:30:30:30:31:38:36:33:33:30:30:31: 

0c:fe:c8:ce:cf:a0:01:11:c9:2c:29:62:8d:03 

SOH Ver. Sequence Number of 1st Message # Msgs in Frame 

MsgSz 
Presence 

Map 

Msg 

Type 
Fields 



Trading algorithm 

 Dummy trading algorithm for verification purposes 
 Demo goal to demonstrate parsing OPRA packets at line rate 

 Sending all decompressed data back through UDP would bottleneck the 
processing 

 Return a subset of the fields 
 Required to throttle the amount of data sent out through UDP 

 Host configures which field range is returned 

 

7 



Compiler Features 

8 



Altera I/O Channels 

 Allows kernels to interface to outside world  
 Simple API to read and write data from external sources 

 Available channel are board-specific, defined by board designer  

 This example uses IO channels connected to a UDP 
Offload Engine to communicate over 10 Gbps Ethernet 

 

9 

10 G Ethernet 
UDP Offload 

Engine 

OpenCL 

Kernel 

Source 

Sink 

kernel void foo(){ 

   read_channel_altera(); 

   process_data(); 

   write_channe_alteral(); 

} 
PCIE Host 

Processor 



Loop Pipelining: Loop Carried Dependencies 

 Loop-carried dependencies are dependencies where 

one iteration of the loop depends upon the results of 

another iteration of the loop 

 

 

 

 

 

 

 

 The variable state in iteration 1 depends on the value 

from iteration 0. Similarly, iteration 2 depends on the 

value from iteration 1, etc. 

10 

__kernel void generate_rngs(ulong num_rnds) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<num_rnds; i++) { 
    state = generate_next_state( state ); 
    unit y = extract_random_number( state ); 
    write_channel_altera(RANDOM_STREAM, y); 
  } 
} 



Loop Pipelining (2) 

 To achieve acceleration, we can pipeline each iteration 

of a loop containing loop carried dependencies 
 Analyze any dependencies between iterations 

 Schedule these operations 

 Launch the next iteration as soon as possible 

 

 

 

 

 

 

 

 

 

 

11 

At this point, we can 

launch the next 

iteration 

__kernel void generate_rngs(ulong num_rnds) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<num_rnds; i++) { 
    state = generate_next_state( state ); 
    unit y = extract_random_number( state ); 
    write_channel_altera(RANDOM_STREAM, y); 
  } 
} 



Loop Pipelining Example 

 No Loop Pipelining 

12 

i0 

i1 

i2 

 With Loop Pipelining 

i0 

i1 

i2 

i3 

i4 

Looks almost 

like ND-

range thread 

execution! C
lo

c
k
 C

y
c
le

s
 

C
lo

c
k
 C

y
c
le

s
 

No Overlap of Iterations! 
Finishes Faster because Iterations 

Are Overlapped 



Kernel Implementation 

13 



OPRA Field Parser 

 UDP packet split into fixed length frames 
 OPRA FAST processing expressed as a loop 

 Allow the OpenCL compiler to extract pipeline parallelism from loop iterations  

 Each iteration processes one frame 

 Fields may span across multiple frames 
 Loop carried dependencies 

 The compiler understands and generates efficient hardware in the presence of dependencies 

14 

UDP IP 

Pipelined parallel processing of frames 



OPRA Decoding Loop 

 Every loop iteration, 8 byte frame of data is read from 
the UDP interface 
 Except in rare case when there is data left from last frame 

 The multiple fields of the OPRA message are 
constructed from over several iterations of the loop 
 As each field is decoded, it is written to a location in the message structure 

 When the message is fully parsed, it is sent to the 
trading kernel via a kernel-to-kernel channel 
 Non-present fields (according to the Presense Map) are maintained from last 

message or incremented 

 Loop carried dependencies are minimized to allow one 
iteration to launch every cycle 
 If hardware frequency >= 156.25 MHz , we can saturate the 10G connection 

15 



Other Kernels 

 UDP IO data interface is 16 bytes wide, while the 

Decoder kernel takes 8 bytes, two kernels are used as 

16-to-8 byte adaptors 

 Two kernels are used to choose between sending data 

from the IO channels or from global memory 

16 



Latency measurement 

17 

UDP stack 

latency 

OPRA 

decoder 

latency 

Kernel runs @ 192 MHz 

25 cycles 38 cycles 

0.328 μs 

MAC+ 

UDP 

interface 

IO 

Channel 

Decoded 

messages 

 10G UDP OPRA Decoder 

U
D

P
 I

P
 

 10G XCVR 



Host Implementation 

18 



Host Program 

 OPRA Kernels can either communicate over UDP IO 

Channels, or by reading and writing to memory 

 If UDP IO channels are being used, the host will send 

and receive data  over UDP sockets to the IP address of 

the FPGA card 
 10G Ethernet card should be installed in host PC, connected to FPGA card 

 The host program forks into two processes, which 

allows the host to send and receive data over UDP 

independently 

 Tested using Solarflare network interface card 
 OpenOnload  drivers are used to accelerate UDP transfers, and are needed 

to consistently saturate the 10G interface  

19 



Tips for tuning host to achieve line rate 

 Host OS is not a real time OS 
 System jitter can cause packet loss on the host 

 Do not run any unnecessary services or applications 

 Run app through demo.sh script  
 Does some driver tuning to minimize overhead 

 This proves sufficient on the test machine we have on our side 

          (Intel(R) Core(TM)2 Quad CPU    Q9550  @ 2.83GHz) 

20 



Running the example design 

   

      host/opra [mode] [UDP frames] 
 

 [mode] configures where the data source and 

destination are located 
 memory input  memory output (default, 0) 

 UDP input  memory output (1) 

 Memory input  UDP output (2) 

 UDP input UDP output (3) 

 [UDP frames] specifies how many frames to transmit 
 The frames are read from a pcap file that comes with the example 

 

 

21 



Demo output 

> host/opra 3 300000 

 
Using AOCX: opra.aocx 

Short memory run --> results.txt 

Long run, use as reference for subsequent runs 

Use compact UDP packets for better throughput 

All integrity checks are DONE. 

 

Performance testing: UDP Rx --> OPRA decoder --> UDP Tx 

        Verified field 0 

        Verified field 1 

        Verified field 2 

        Verified field 3 

        Verified field 4 

 

         OPRA stream throughput: 9.417523 Gbit / s 

         (99.7 % of theoretical maximum of 9.446Gb/s) 

22 

Memory based runs for 

integrity checks and 

generating reference 

data 

Multiple UDP runs 

In each run, configure the dummy trading 

algo to return one field of the message 

Max performance 

measured across all runs 



Thank You Thank You Thank You 


