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Application Overview 
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10G OPRA FAST 

 10G Ethernet UDP stream 

 Headers removed by OpenCL kernel 

 Decode compressed OPRA FAST data 

 Reconstruct messages 

 Platform with 10 GbE I/O channels and 
kernels using Altera’s OpenCL 

 < .5 uS Latency 
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OPRA Application 

 Application structure 
 OPRA FAST decoder kernel written in OpenCL 

 The decoder outputs the reconstructed OPRA messages 

 Output sent through a kernel to kernel channel for subsequent processing 

 Modularity 
 Users can plug custom trading kernel 

 Currently using a dummy trading kernel for verification 
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OPRA FAST encoding 

 Each message contains several compressed fields 

 Presence Map of each message tells us which fields of 

the current message are encoded 
 Other fields are repeated from the last message or incremented 

 Compressed fields are variable number of bytes  
 Each byte contains 7 bits of data and ‘stop bit’ for last byte 

 Uncompressed fields are fixed size 
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Trading algorithm 

 Dummy trading algorithm for verification purposes 
 Demo goal to demonstrate parsing OPRA packets at line rate 

 Sending all decompressed data back through UDP would bottleneck the 
processing 

 Return a subset of the fields 
 Required to throttle the amount of data sent out through UDP 

 Host configures which field range is returned 
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Compiler Features 
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Altera I/O Channels 

 Allows kernels to interface to outside world  
 Simple API to read and write data from external sources 

 Available channel are board-specific, defined by board designer  

 This example uses IO channels connected to a UDP 
Offload Engine to communicate over 10 Gbps Ethernet 
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Loop Pipelining: Loop Carried Dependencies 

 Loop-carried dependencies are dependencies where 

one iteration of the loop depends upon the results of 

another iteration of the loop 

 

 

 

 

 

 

 

 The variable state in iteration 1 depends on the value 

from iteration 0. Similarly, iteration 2 depends on the 

value from iteration 1, etc. 
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__kernel void generate_rngs(ulong num_rnds) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<num_rnds; i++) { 
    state = generate_next_state( state ); 
    unit y = extract_random_number( state ); 
    write_channel_altera(RANDOM_STREAM, y); 
  } 
} 



Loop Pipelining (2) 

 To achieve acceleration, we can pipeline each iteration 

of a loop containing loop carried dependencies 
 Analyze any dependencies between iterations 

 Schedule these operations 

 Launch the next iteration as soon as possible 
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At this point, we can 

launch the next 

iteration 

__kernel void generate_rngs(ulong num_rnds) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<num_rnds; i++) { 
    state = generate_next_state( state ); 
    unit y = extract_random_number( state ); 
    write_channel_altera(RANDOM_STREAM, y); 
  } 
} 



Loop Pipelining Example 

 No Loop Pipelining 
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Kernel Implementation 
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OPRA Field Parser 

 UDP packet split into fixed length frames 
 OPRA FAST processing expressed as a loop 

 Allow the OpenCL compiler to extract pipeline parallelism from loop iterations  

 Each iteration processes one frame 

 Fields may span across multiple frames 
 Loop carried dependencies 

 The compiler understands and generates efficient hardware in the presence of dependencies 
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OPRA Decoding Loop 

 Every loop iteration, 8 byte frame of data is read from 
the UDP interface 
 Except in rare case when there is data left from last frame 

 The multiple fields of the OPRA message are 
constructed from over several iterations of the loop 
 As each field is decoded, it is written to a location in the message structure 

 When the message is fully parsed, it is sent to the 
trading kernel via a kernel-to-kernel channel 
 Non-present fields (according to the Presense Map) are maintained from last 

message or incremented 

 Loop carried dependencies are minimized to allow one 
iteration to launch every cycle 
 If hardware frequency >= 156.25 MHz , we can saturate the 10G connection 
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Other Kernels 

 UDP IO data interface is 16 bytes wide, while the 

Decoder kernel takes 8 bytes, two kernels are used as 

16-to-8 byte adaptors 

 Two kernels are used to choose between sending data 

from the IO channels or from global memory 
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Latency measurement 
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Host Implementation 
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Host Program 

 OPRA Kernels can either communicate over UDP IO 

Channels, or by reading and writing to memory 

 If UDP IO channels are being used, the host will send 

and receive data  over UDP sockets to the IP address of 

the FPGA card 
 10G Ethernet card should be installed in host PC, connected to FPGA card 

 The host program forks into two processes, which 

allows the host to send and receive data over UDP 

independently 

 Tested using Solarflare network interface card 
 OpenOnload  drivers are used to accelerate UDP transfers, and are needed 

to consistently saturate the 10G interface  
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Tips for tuning host to achieve line rate 

 Host OS is not a real time OS 
 System jitter can cause packet loss on the host 

 Do not run any unnecessary services or applications 

 Run app through demo.sh script  
 Does some driver tuning to minimize overhead 

 This proves sufficient on the test machine we have on our side 

          (Intel(R) Core(TM)2 Quad CPU    Q9550  @ 2.83GHz) 
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Running the example design 

   

      host/opra [mode] [UDP frames] 
 

 [mode] configures where the data source and 

destination are located 
 memory input  memory output (default, 0) 

 UDP input  memory output (1) 

 Memory input  UDP output (2) 

 UDP input UDP output (3) 

 [UDP frames] specifies how many frames to transmit 
 The frames are read from a pcap file that comes with the example 
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Demo output 

> host/opra 3 300000 

 
Using AOCX: opra.aocx 

Short memory run --> results.txt 

Long run, use as reference for subsequent runs 

Use compact UDP packets for better throughput 

All integrity checks are DONE. 

 

Performance testing: UDP Rx --> OPRA decoder --> UDP Tx 

        Verified field 0 

        Verified field 1 

        Verified field 2 

        Verified field 3 

        Verified field 4 

 

         OPRA stream throughput: 9.417523 Gbit / s 

         (99.7 % of theoretical maximum of 9.446Gb/s) 
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